
Page 1 of 12

Creating an Online Storefront

Lesson 11a

In this lesson, you will create a generic online storefront. You will learn the methods

for creating the relevant database tables, as well as the scripts for displaying the

information to the user. The examples used in this lesson represent one of an infinite

number of possibilities to complete these tasks, and are meant to provide a foundation

of knowledge rather than a definitive method for completing this task.

In this lesson, you will learn how to

 Create relational tables for an online store

 Create the scripts to display store categories

 Create the scripts to display individual items

Planning and Creating the Database Tables

Before you tackle the process of creating database tables for an online store, think

about the real-life shopping process. When you walk into a store, items are ordered in

some fashion: The hardware and the baby clothes aren't mixed together, the

electronics and the laundry detergent aren't side by side, and so on. Applying that

knowledge to database normalization, already you can see you will need a table to

hold categories and a table to hold items. In this simple store, items will each belong

to one category.

Next, think about the items themselves. Depending on the type of store you have,

your items may or may not have colours, and may or may not have sizes. But all your

items will have a name, a description, and a price. Again, thinking in terms of

normalization, you can see that you will have one general items table and two

additional tables that relate to the general items table.

Table 1 shows sample table and field names to use for your online storefront. In a

minute, you'll create the actual SQL statements, but first you should look at this

information and try to see the relationships appear. Ask yourself which of the fields

should be primary or unique keys.

Table 1. Storefront Table and Field Names

Table Name Field Names

store_categories id, cat_title, cat_desc

store_items id, cat_id, item_title, item_price, item_desc,

item_image

store_item_size item_id, item_size

Page 2 of 12

Table 1. Storefront Table and Field Names

Table Name Field Names

store_item_color item_id, item_color

As you can see in the following SQL statements, the store_categories table has

two fields besides the id field: cat_title and cat_desc, for title and description.

The id field is the primary key, and cat_title is a unique field because there's no

reason you would have two identical categories.

mysql> create table store_categories (

 -> id int not null primary key auto_increment,

 -> cat_title varchar (50) unique,

 -> cat_desc text

 ->);

Query OK, 0 rows affected (0.03 sec)

Next we tackle the store_items table, which has five fields besides the id field none

of which are unique keys. The lengths specified in the field definitions are arbitrary;

you should use whatever best fits your store.

The cat_id field relates the item to a particular category in the store_categories

table. This field is not unique because you will want more than one item in each

category. The item_title, item_price, and item_desc (for description) fields are

self-explanatory. The item_image field will hold a filenamein this case, the file is

assumed to be local to your serverwhich you will use to build an HTML tag

when it's time to display your item information.

mysql> create table store_items (

 -> id int not null primary key auto_increment,

 -> cat_id int not null,

 -> item_title varchar (75),

 -> item_price float (8,2),

 -> item_desc text,

 -> item_image varchar (50)

 ->);

Query OK, 0 rows affected (0.00 sec)

Both the store_item_size and store_item_color tables contain optional

information: If you sell books, they won't have sizes or colors, but if you sell shirts,

they will. For each of these tables, no keys are involved because you can associate as

many colors and sizes with a particular item as you want.

mysql> create table store_item_size (

 -> item_id int not null,

 -> item_size varchar (25)

 ->);

Query OK, 0 rows affected (0.00 sec)

Page 3 of 12

mysql> create table store_item_color (

 -> item_id int not null,

 -> item_color varchar (25)

 ->);

Query OK, 0 rows affected (0.00 sec)

These are all the tables necessary for a basic storefront that is, for displaying the items

you have for sale. In the next lesson "Creating a Shopping Cart Mechanism," you will

integrate the user experience into the mix. For now, just concentrate on your

inventory.

In the previous lesson "Creating an Online Address Book," you learned how to use

PHP forms and scripts to add or delete records in your tables. If you apply the same

principles to this set of tables, you can easily create an administrative front end to

your storefront. We won't go through that process in this book, but feel free to do it on

your own. At this point, I am confident you know enough about PHP and MySQL to

complete the tasks.

For now, you can simply issue MySQL queries, via the MySQL monitor or other

interface, to add information to your tables. Following are some examples, if you

want to follow along with sample data.

Inserting Records into the store_categories Table

The following queries create three categories in your store_categories table: hats,

shirts, and books.

mysql> insert into store_categories values

 -> ('1', 'Hats', 'Funky hats in all shapes and sizes!');

Query OK, 1 row affected (0.01 sec)

mysql> insert into store_categories values ('2', 'Shirts', 'From t-

shirts to

 -> sweatshirts to polo shirts and beyond.');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_categories values ('3', 'Books', 'Paperback,

hardback,

 -> books for school or play.');

Query OK, 1 row affected (0.00 sec)

In the next section, we'll add some items to the categories.

Inserting Records into the store_items Table

The following queries add three item records to each category. Feel free to add many

more.

mysql> insert into store_items values ('1', '1', 'Baseball Hat',

'12.00',

 -> 'Fancy, low-profile baseball hat.', 'baseballhat.gif');

Query OK, 1 row affected (0.00 sec)

Page 4 of 12

mysql> insert into store_items values ('2', '1', 'Cowboy Hat',

'52.00',

 -> '10 gallon variety', 'cowboyhat.gif');

Query OK, 1 row affected (0.01 sec)

mysql> insert into store_items values ('3', '1', 'Top Hat', '102.00',

 -> 'Good for costumes.', 'tophat.gif');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('4', '2', 'Short-Sleeved T-

Shirt',

 -> '12.00', '100% cotton, pre-shrunk.', 'sstshirt.gif');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('5', '2', 'Long-Sleeved T-

Shirt',

 -> '15.00', 'Just like the short-sleeved shirt, with longer

sleeves.',

 -> 'lstshirt.gif');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('6', '2', 'Sweatshirt',

'22.00',

 -> 'Heavy and warm.', 'sweatshirt.gif');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('7', '3', 'Jane\'s Self-Help

Book',

 -> '12.00', 'Jane gives advice.', 'selfhelpbook.gif');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('8', '3', 'Generic Academic

Book',

 -> '35.00', 'Some required reading for school, will put you to

sleep.',

 -> 'boringbook.gif');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('9', '3', 'Chicago Manual of

Style',

 -> '9.99', 'Good for copywriters.', 'chicagostyle.gif');

Query OK, 1 row affected (0.00 sec)

Inserting Records into the store_item_size Table

The following queries associate sizes with one of the three items in the shirts

category and a generic "one size fits all" size to each of the hats (assume they're

strange hats). On your own, insert the same set of size associations for the remaining

items in the shirts category.

mysql> insert into store_item_size values (1, 'One Size Fits All');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (2, 'One Size Fits All');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (3, 'One Size Fits All');

Page 5 of 12

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (4, 'S');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (4, 'M');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (4, 'L');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (4, 'XL');

Query OK, 1 row affected (0.00 sec)

Inserting Records into the store_item_color Table

The following queries associate colors with one of the three items in the shirts

category. On your own, insert color records for the remaining shirts and hats.

mysql> insert into store_item_color values (1, 'red');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_color values (1, 'black');

Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_color values (1, 'blue');

Query OK, 1 row affected (0.00 sec)

Displaying Categories of Items

Believe it or not, the most difficult task in this project is now complete. Compared to

thinking up categories and items, creating the scripts used to display the information

is easy! The first script you will make is one that lists categories and items.

Obviously, you wouldn't want to list all categories and all items all at once as soon as

the user walks in the door, but you do want to give the user the option of immediately

picking a category, seeing its items, and then picking another category. In other

words, this script will serve two purposes: It will show the categories and then show

the items in that category.

Listing 1 shows the code for seestore.php.

Listing 1. Script to View Categories
 1: <?php

 2: //connect to database

 3: $conn = mysql_connect("localhost", "joeuser", "somepass")

 4: or die(mysql_error());

 5: mysql_select_db("testDB",$conn) or die(mysql_error());

 6:

 7: $display_block = "<h1>My Categories</h1>

 8: <P>Select a category to see its items.</p>";

 9:

10: //show categories first

11: $get_cats = "select id, cat_title, cat_desc from

12: store_categories order by cat_title";

13: $get_cats_res = mysql_query($get_cats) or die(mysql_error());

Page 6 of 12

14:

15: if (mysql_num_rows($get_cats_res) < 1) {

16: $display_block = "<P>Sorry, no categories to

browse.</p>";

17: } else {

18:

19: while ($cats = mysql_fetch_array($get_cats_res)) {

20: $cat_id = $cats[id];

21: $cat_title = strtoupper(stripslashes($cats[cat_title]));

22: $cat_desc = stripslashes($cats[cat_desc]);

23:

24: $display_block .= "<p><a

25:

href=\"$_SERVER[PHP_SELF]?cat_id=$cat_id\">$cat_title

26:
$cat_desc</p>";

27:

28: if ($_GET[cat_id] == $cat_id) {

29: //get items

30: $get_items = "select id, item_title, item_price

31: from store_items where cat_id = $cat_id

32: order by item_title";

33: $get_items_res = mysql_query($get_items) or

die(mysql_error());

34:

35: if (mysql_num_rows($get_items_res) < 1) {

36: $display_block = "<P>Sorry, no items in

37: this category.</p>";

38: } else {

39:

40: $display_block .= "";

41:

42: while ($items = mysql_fetch_array($get_items_res))

{

43: $item_id = $items[id];

44: $item_title =

stripslashes($items[item_title]);

45: $item_price = $items[item_price];

46:

47: $display_block .= "<a

48:

href=\"showitem.php?item_id=$item_id\">$item_title

49: (\$$item_price)";

50: }

51:

52: $display_block .= "";

53: }

54: }

55: }

56: }

57: ?>

58: <HTML>

59: <HEAD>

60: <TITLE>My Categories</TITLE>

61: </HEAD>

62: <BODY>

63 :<?php echo $display_block; ?>

64: </BODY>

65: </HTML>

Page 7 of 12

Given the length of scripts you saw in the previous lesson, these 65 fully functional

lines should be a welcome change. In lines 35, the database connection is opened

because regardless of which action the script is taking showing categories or showing

items in categoriesthe database is necessary.

In lines 78, the $display_block string is started, with some basic page title

information. Lines 11- 13 create and issue the query to retrieve the category

information. Line 15 checks for categories; if none are in the table, a message is

printed to the user and that's all this script does. However, if categories are found, the

script moves on to line 19, which begins a while loop to extract the information.

In the while loop, lines 20 - 22 retrieve the ID, title, and description of the category.

String operations are performed to ensure that no slashes are in the text and that the

category title is in uppercase for display purposes. Lines 24 - 26 place the category

information, including a self-referential page link, in the $display_block string. If a

user clicks the link, she will return to this same script, except with a category ID

passed in the query string. The script checks for this value in line 28.

If a $cat_id value has been passed to the script because the user clicked on a

category link in hopes of seeing listed items, the script builds and issues another query

(lines 3033) to retrieve the items in the category. Lines 4253 check for items and then

build an item string as part of $display_block. Part of the information in the string is

a link to a script called showitem.php, which you'll create in the next section.

After reaching that point, the script has nothing left to do, so it prints the HTML and

value of $display_block. Figure 1 shows the outcome of the script when accessed

directly; only the category information shows.

Page 8 of 12

Figure 1. Categories in the store.

In Figure 2, you see what happens when the user clicked on the HATS link: The script

gathered all the items associated with the category and printed them on the screen.

The user can still jump to another category on this same page, and it will gather the

items for that category.

Page 9 of 12

Figure 2. Items within a category in the store.

The last piece of the puzzle for this lesson is the creation of the item display page.

Displaying Items

The item display page in this lesson will simply show all the item information. In the

next lesson, you'll add a few lines to it to make it function with an "add to cart"

button. So for now, just assume this is a paper catalogue.

Listing 2 shows the code for showitem.php.

Listing 2. Script to View Item Information
 1: <?php

 2: //connect to database

 3: $conn = mysql_connect("localhost", "joeuser", "somepass")

 4: or die(mysql_error());

 5: mysql_select_db("testDB",$conn) or die(mysql_error());

 6:

 7: $display_block = "<h1>My Store - Item Detail</h1>";

 8:

 9: //validate item

10: $get_item = "select c.id as cat_id, c.cat_title, si.item_title,

11: si.item_price, si.item_desc, si.item_image from store_items as si

left join

12: store_categories as c on c.id = si.cat_id where si.id =

$_GET[item_id]";

Page 10 of 12

13:

14: $get_item_res = mysql_query($get_item) or die (mysql_error());

15:

16: if (mysql_num_rows($get_item_res) < 1) {

17: //invalid item

18: $display_block .= "<P>Invalid item selection.</p>";

19: } else {

20: //valid item, get info

21: $cat_id = mysql_result($get_item_res,0,'cat_id');

22: $cat_title = strtoupper(stripslashes(

23: mysql_result($get_item_res,0,'cat_title')));

24: $item_title =

stripslashes(mysql_result($get_item_res,0,'item_title'));

25: $item_price = mysql_result($get_item_res,0,'item_price');

26: $item_desc =

stripslashes(mysql_result($get_item_res,0,'item_desc'));

27: $item_image = mysql_result($get_item_res,0,'item_image');

28:

29: //make breadcrumb trail

30: $display_block .= "<P>You are viewing:

32: $cat_title

31: > $item_title</p>

33:

34: <table cellpadding=3 cellspacing=3>

35: <tr>

36: <td valign=middle align=center></td>

37: <td

valign=middle><P>Description:
$item_desc</p>

38: <P>Price: \$$item_price</p>";

39:

40: //get colors

41: $get_colors = "select item_color from store_item_color where

42: item_id = $item_id order by item_color";

43: $get_colors_res = mysql_query($get_colors) or

die(mysql_error());

44:

45: if (mysql_num_rows($get_colors_res) > 0) {

46: $display_block .= "<P>Available

Colors:
";

47:

48: while ($colors = mysql_fetch_array($get_colors_res)) {

49: $item_color = $colors['item_color'];

50: $display_block .= "$item_color
";

51: }

52: }

53:

54: //get sizes

55: $get_sizes = "select item_size from store_item_size where

56: item_id = $item_id order by item_size";

57: $get_sizes_res = mysql_query($get_sizes) or

die(mysql_error());

58:

59: if (mysql_num_rows($get_sizes_res) > 0) {

60: $display_block .= "<P>Available

Sizes:
";

61:

62: while ($sizes = mysql_fetch_array($get_sizes_res)) {

63: $item_size = $sizes['item_size'];

64: $display_block .= "$item_size
";

65: }

66: }

Page 11 of 12

67:

68: $display_block .= "

69: </td>

70: </tr>

71: </table>";

72: }

73: ?>

74: <HTML>

75: <HEAD>

76: <TITLE>My Store</TITLE>

77: </HEAD>

78: <BODY>

79: <?php echo $display_block; ?>

80: </BODY>

81: </HTML>

In lines 35, the database connection is opened because information in the database

forms all the content of this page. In line 7, the $display_block string is started, with

some basic page title information.

Lines 10 - 4 create and issue the query to retrieve the category and item information.

This particular query is a table join. Instead of selecting the item information from

one table and then issuing a second query to find the name of the category, this query

simply joins the table on the category ID to find the category name.

Line 16 checks for a result; if there is no matching item in the table, a message is

printed to the user and that's all this script does. However, if item information is

found, the script moves on and gathers the information in lines 21- 27.

In lines 30 - 32, you create what's known as a "breadcrumb trail." This is simply a

navigational device used to get back to the top-level item in the architecture. Those

are fancy words that mean "print a link so that you can get back to the category." The

category ID, retrieved from the master query in this script, is appended to the link in

the breadcrumb trail.

In lines 34 - 38, you continue to add to the $display_block, setting up a table for

information about the item. You use the values gathered in lines 21 - 27 to create an

image link, print the description, and print the price. What's missing are the colours

and sizes, so lines 40 - 52 select and print any colors associated with this item, and

lines 54 - 66 gather the sizes associated with the item.

Lines 68 - 72 wrap up the $display_block string and the master if...else

statement, and because the script has nothing left to do, it prints the HTML (lines 74 -

81) including the value of $display_block. Figure 3 shows the outcome of the script

when selecting the baseball hat from the hats category. Of course, your display will

differ from mine, but you get the idea.

Page 12 of 12

Figure 3. The baseball hat item page.

That's all there is to creating a simple item display. In the next lesson, you'll modify

this script so that it can add the item to a shopping cart.

Workshop

The workshop is designed to help you anticipate possible questions, review what

you've learned, and begin learning how to put your knowledge into practice.

Quiz

1. Which PHP function was used to uppercase the category title strings?

2. Why don't the store_item_size and store_item_color tables contain

any primary or unique keys?

Answers

1. strtoupper()

2. Presumably, you will have items with more than one colour and more than

one size. Therefore, item_id is not a primary or unique key. Also, items

may have the same colours or sizes, so the item_color and item_size fields

must not be primary or unique either.

