
Faculty of Science, Engineering and Technology

Introduction to Programming
Pass Task 5.1: Circle Moving in C
Overview
In Topic 3 you developed a Circle Moving Program using Pascal. To check your reference
sheet, and to see how similar Pascal and C programs really are, you will now implement an-
other version of this program using C.

Purpose: Start to learn a new language.
Task: Create the circle moving program using the new language, and your

reference sheet.
Time: This task should be completed before the start of week 9.
Resources: ■ Programming Arcana

■ Google
■ Your language reference sheet
■ Swinburne CodeCasts (YouTube Channel, iTunesU)

• Learning a new language
• Introducing Objects

Submission Details
You must submit the following files to Doubtfire:
■ Your circle moving code in C/C++

Make sure that your task has the following in your submission:
■ The program must move the circle, and ensure it remains on the screen.
■ Code must follow the C coding convention used in the unit (layout, and use of case).

■ The code must compile and the screenshot show it working.

Introduction to Programming Pass Task5.1: Circle Moving in C

Page 2 of 6

Instructions
Here is a list of C functions and procedures available in C to help you with this program.

Function / Procedure Does
void open_graphics_window(title, width, height); Opens a new window, with indicated title and size

void load_default_colors (); Loads the default colours such as COLOR_RED.

void clear_screen (); Clears the screen to a color, e.g. COLOR_WHITE

void delay (time); Delays for a number of milliseconds

void process_events (); Listens for user input - required for any input

int screen_width (); int screen_height (); The width and height of the window

float mouse_x(); float mouse_y(); X or Y location of the mouse

bool mouse_clicked(button) Was the mouse button clicked?

Buttons are LEFT_BUTTON and RIGHT_BUTTON

bool window_close_requested(); Has the user asked to close the Window?

bool key_down(key); Is the key currently held down?

Keys are in the format A_KEY, NUM_1_KEY, LEFT_KEY etc

bool key_typed(key); Was the key typed? (Pressed then released)

Introduction to Programming Pass Task5.1: Circle Moving in C

Page 3 of 6

1. Download the starter code for this task.

2. Extract the zip file to your code directory (e.g. Documents/Code)
3. Rename the Project Template folder to CharacterMoving2
4. Open a Terminal window and navigate to your CharacterMoving2 directory.
5. Write the code to implement a basic SwinGame program using the following code.

6. Switch back to the Terminal and compile and run your program.
7. As with Pascal, the window closes after 5 seconds when the program's instructions end.

Implement an event loop to allow you to control the life of the program.
■ The event loop will be located in Main, and will loop until the user closes the window.
■ Process Events needs to be called once each event loop to update SwinGame with

the actions that have occurred since the last time through the loop.

8. Switch back to the Terminal and compile and run the program. It should now remain open
until you close the window.

9. Create a constant named CIRCLE_RADIUS and set it to 90.

Note: This contains the C/C++ version of SwinGame.

Procedure: Main

Steps:
1: Open a Graphics Window with title 'Character Moving'

that is 800x600
2: Do
3: Process Events
4: While Window Close is not Requested

Introduction to Programming Pass Task5.1: Circle Moving in C

Page 4 of 6

10. Alter Main to draw a circle on the screen, using variables for the circle's x and y location.

11. Switch to the Terminal, compile and run the program. You should be able to see a green
circle in the centre of the screen.

■ The x and y variables in Main store all of the data for this game: the location of the cir-
cle. As these are the only variables in the "game" (which is being run by the steps in
the Main procedure), these are the only things that can change.

Procedure: Main

Local Variables:
- x, y: Single data for the circle's location
Steps:
1: Open a Graphics Window with title 'Character Moving'

that is 800x600
2: Assign x the value 400
3: Assign y the value 300
4: Do
5: Process Events
6: Clear the Screen to COLOR_WHITE
7: Fill a Circle using COLOR_GREEN, at location x,y

with a radius CIRCLE_RADIUS
8: Refresh the Screen limiting it to 60 FPS
9: While Window Close is not Requested

Note: To ensure a consistent game speed you can use RefreshScreen(60) to limit the
refresh rate to 60 frames per second (FPS)

WARNING: C/C++ is case sensitive! So this means you really need to following the
case recommendations. So make sure you use int main() in C for example.

Introduction to Programming Pass Task5.1: Circle Moving in C

Page 5 of 6

The next step will involve using if statements to selectively run sections of your code.
12. Alter Main to update the x variable when the user is holding down the arrow keys. The fol-

lowing pseudocode shows the changes for moving left and right. Include the code to move
in all four directions.

Procedure: Main

Local Variables:
- x, y: Single data for the circle's location
Steps:
1: Open a Graphics Window with title 'Character Moving'

that is 800x600
2: Assign x the value 400
3: Assign y the value 300
4: Repeat
5:

6:
7:
8:
9:

10:
11:

12:

Process Events

if the LEFT_KEY Key is Down then
Assign x, the value x - 1

if the RIGHT_KEY Key is Down then
Assign x, the value x + 1

Clear the Screen to ColorWhite
Fill a Circle using ColorGreen, at location x,y

with a radius 90
Refresh the Screen limiting it to 60 FPS

13: Until Window Close is Requested

13. Switch back to the Terminal and compile and run the program. You should be able to move
the circle using the left and right arrow keys. If you keep your finger on the one arrow key
long enough, the circle will disappear off the edge of the screen.

Tip: C/C++ has operators to add/subtract one from a variable; use ++ and --.

Introduction to Programming Pass Task5.1: Circle Moving in C

Page 6 of 6

14. Now, adjust the if statements so that the program will ensure that the circle remains on the
screen.

15. Switch to the Terminal. Compile and run the program, and test that you cannot move the
circle off the screen to the left or right.

Compare your final program to your Pascal program… Notice how similar they are. If you can
see that they are basically the same you are well on the way with your understanding of
programming.

Tip: To find the width of the current screen you can call the SwinGame function
screen_width(). Similarly, C/C++ has a screen_height() function to give you the height
of the screen.

	Overview
	Instructions

