
Faculty of Science, Engineering and Technology

Introduction to Programming
Pass Task 1.2: My Functions
Overview
Procedures are a great tool for capturing the instructions needed to perform a task, but some-
times you need to be able to capture the instructions needed to calculate a value. Using func-
tions you can now create artefacts to encapsulate the steps needed to calculate a value.

Purpose: Learn how to create your own functions.
Task: Use the following instructions to implement a function and use it to calculate

a value based on user input.
Time: This task should be completed before the start of week 3.
Resources: ■ Chapter 4 of the Programming Arcana

■ Swinburne CodeCasts (YouTube Channel, iTunesU)
• Creating your own Functions

■ Syntax Videos
• Calling Functions, Creating Your Own Functions

Submission Details
You must submit the following files to Doubtfire:
■ Program source code demonstrating your creation and use of functions

■ Screenshot of the Terminal showing the execution of your program.
Make sure that your task has the following in your submission:
■ The program must use one of your functions to calculate a return value.
■ Code must follow the Pascal coding convention used in the unit (layout, and use of case).
■ The code must compile and the screenshot show it working.
■ Your program must demonstrate the use of functions with parameters, as well as constants.

Introduction to Programming Pass Task 1.2: My Functions

About Functions
In programming, functions are used to calculate a value. They are very similar to procedures,
with the added feature that they return a result when they end. For example, the following
program uses the Pi, Sqr and Round functions to calculate the area of a circle.

program CircleArea;
uses TerminalUserInput;

procedure Main();
var

cirRadius, cirArea: Single;
roundedValue: Integer;

begin
cirRadius := ReadInteger('Enter a radius: ');
cirArea := Pi() * Sqr(cirRadius);
WriteLn('Circles area is ', cirArea:4:2);
roundedValue := Round(cirArea);
WriteLn('Which rounded off has a value of ', roundedValue);

end;

begin
Main();

end.

Tip: The Free Pascal website has a list of all of the Mathematical functions available to
all Pascal programs, as well as a list of units that you can use if you want access to addi-
tional functionality.

In this program we could create a CircleArea function that calculates the area of a circle.
That would mean that we could use that function any time we wanted to get the area of a
circle.
Designing a function is just like designing a procedure. One way of approaching it is to think
that someone has asked you to perform the calculation. Putting yourself in that position will
help you think about the data the function will need to be given, and the data it will return. In
this case you need to be told the radius of the circle, and you then return the area. The
radius will be a number, and could have a fractional part so you use the Single data type.
The result will then be a number and could have a fractional part, so it is also a Single. This
gives you the functions prototype - which is all the details about the functions name, its
parameters, and re- turn type.
The body of the function will then calculate the area of the circle, from the radius parameter.
It will then set this as the result of the function. The value in the result variable is returned to
the caller when the function ends.

You can then call the CircleArea function in Main, and store the result of calling the function
into Main's cirArea variable.

Note: Pascal creates the result variable for you automatically from the function declaration. The
following code highlights where result is "declared".

 function CircleArea(radius: Single): Single;

function CircleArea(radius: Single): Single;
var

area: Single;
begin

area := Pi() * Sqr(radius);
result := area;

end;

procedure Main();
var

cirRadius, cirArea: Single;
roundedValue: Integer;

begin
cirRadius := ReadInteger('Enter a radius: ');
cirArea := CircleArea(cirRadius);
WriteLn('Circle area is ', cirArea:4:2);
roundedValue := Round(area);
WriteLn('Which rounded off has a value of ', roundedValue);

end;

Instructions
Functions allow you to build modular programs that take parameters and return a result.
To explore this topic, we will modify the Terminal SimplePolitics.pas program so that it will:

■ Prompt the user to enter his or her name and birth year.
■ Call a function to calculate how old the user was when Trump was elected President of the

USA (you will need to write this function yourself).
■ Print to the terminal the user’s name and age when Trump was elected.
■ Call the ReadBoolean(prompt: String): Boolean; function from TerminalUserInput.pas to

prompt the user to enter whether he or she is a supporter of Brexit.

■ Print out whether the user supports Brexit or not based on the result of calling the
ReadBoolean() function.

 Compile and run your program.

Procedure: Main

Variables:
- Const YEAR_TRUMP_ELECTED = 2016 (to store an Integer value

read from the file)
- yearBorn (to store String values read from the file)

Steps:

1.Prompt the user to enter his or her name.

2.Read in the user’s name.

3.Prompt the user to enter his or her year of birth.

4.Read in the user’s year of birth.

5.Call the function calculateAgeWhenTrumpElected(birthYear:
Integer): Integer; to calculate how old the user was when Trump
was elected President of the USA.

6.Print to the terminal the user’s name and the message: ‘you
were X years old when Trump was elected’.

7.Call the function ReadBoolean(prompt: String): Boolean.

8.Print out the user’s name, then either ‘is a Brexit
supporter’or ‘is NOT a Brexit supporter’ depending on the
output of the function ReadBoolean().

9.Request the user to “Press Enter to Continue”.

10. Read a blank line.

Note: You will need to use the ReadBoolean() function in the file TerminalUserInput
(and add uses TerminalUserInput to the top of SimplePolitics.pas)

Now that the Task is complete you can submit it for assessment, which will help prepare it for your
portfolio.

1. Use Skitch (or your preferred screenshot program) to take a screenshot of the Terminal,
as this is one of the things you will need to submit.

2. Save the document and backup your work to multiple locations!
• Once you get things working you do not want to lose them.
• Work on your computer’s storage device most of the time... but backup your work

when you finish each task.
• Use Dropbox or a similar online storage provider, as well as other locations.
• Doubtfire is not a Backup of your work, so make sure you keep a copy!
• A USB key and portable hard drives are good secondary backups... but can be lost/

damaged (do not rely upon them).
3. Login to Doubtfire, and locate Pass Task 1.2
4. Change the status of the task to Ready To Mark
5. Upload your completed Hello World code and the screenshot.
6. If you check back later Doubtfire will have prepared these as PDFs for your tutor to

assess.

You now have another of your first portfolio pieces. This will help demonstrate your learning from
the unit.

End of Task

check Note: This is one of the tasks you need to submit to Doubtfire. Check the
assessment criteria for the important aspects your tutor will mark.

	Overview
	About Functions
	Instructions

