
Faculty of Science, Engineering and Technology

Introduction to Programming
High Distinction Task 2.1: Custom Program High Distinction Re-
quirements
Overview
To be eligible for a High Distinction grade you must demonstrate that you can use the skills
you have learnt to create high quality software solutions that demonstrate the highest pro-
gramming and design standards.

Purpose: Demonstrate that you can create high quality software and use other APIs.
Task: Tidy and extend your custom program, demonstrating that you can create

high quality software. You must meet the HD custom program
requirements – Please check the rubrics for this on Blackboard. Your
grade will depend on which level in the Rubric you demonstrate.

Time: This must be completed before you submit your portfolio, but it is advisable to
submit progress for feedback at earlier stages.

Resources: ■ Programming Arcana
■ Swinburne CodeCasts (YouTube Channel, iTunesU)

• Making the most of the concept of abstraction
■ Stack overflow
■ Search engines

Submission Details
You must submit the following files to Doubtfire:
■ Program source code, and screenshot of the program in action.
■ Design Report

Note: If you are not currently up to date you should skip this task and return to it once
you are up to date with the Distinction Tasks. Do not allow High Distinction Tasks to delay
you in keeping up with the unit's work.

Introduction to Programming High Distinction Task 2.1: Custom Program

Instructions
Demonstrate that you can design programs and implement them to a very high standard.
It is recommended that you do this by ensuring that your Custom Program for Distinction
meets both the Distinction and High Distinction Standards. However, you can design and im-
plement a second program to meet these standards if desired.

Your program must demonstrate the following:
■ Ability to design and implement a program of reasonable complexity.

• Program does more than have the user respond to random actions (eg. Food Hunter), or
simply manipulate data (eg. Sort Visualiser, or the array of records program).

• The program must demonstrate the need to think about its structure and implementation.
■ Effective use of functional decomposition.

• The program consists of small functions and procedures with little code duplication.
• Data is used intelligently to minimise the amount of code required.

■ Effective use of abstraction.

• Functions and procedures represent meaningful tasks.
• Data types are used to model entities associated with the program

■ Use of good programming practices.

• Code is correctly indented, with meaningful names assigned to all identifiers
• Code is commented to help the reader understand the abstractions and how they work.

Page 2 of 2

Tip: Show your program to tutors and lecturers and ask "How can I make this better?".
This task is more about quality than it is about quantity.

Tip: Consider adding things like levels to a game, or multiplayer support. Adding features
(eg: networking) or using data cleverly to customize and drive your program (eg: state
machines) can help you increase the complexity of a program.

Tip: Keep a journal of the programming ideas you have and notes on your design deci-
sions. These can help you explain how your program meets these criteria in your portfo-
lio. It is important to talk about the problems you encountered and how you dealt
with them. Do this in your video for your interview. Doing this well is necessary for
the higher grades.

	Overview
	Instructions

