
Faculty of Science, Engineering and Technology

Introduction to Programming
Pass Task 2.3: Circle Moving
Overview
Using control flow it is possible to create programs that respond to user input. In this task you
will create a small program that allows the user to move a circle around on the screen.

Purpose: Learn to use the control flow statements within a program to respond to user
actions.

Task: Create a program that allows the user to move a circle around the screen.
Time: This task should be completed before the start of week 6.
Resources: ■ Chapter 5 of the Programming Arcana

■ Swinburne CodeCasts (YouTube Channel, iTunesU)
• Control Flow
• Branching with if statements
• Repeating code with loops

■ Syntax Videos
• Repeat, Compound Statement, If Statement, While, Case

Submission Details
You must submit the following files to Doubtfire:
■ Circle Moving program source code.
■ Screenshot of the program in action.
Make sure that your task has the following in your submission:
■ The program must move the circle, and ensure it remains on the screen.
■ Code must follow the Pascal coding convention used in the unit (layout, and use of case).
■ The code must compile and the screenshot show it working.

Introduction to Programming Pass Task 2.3: Circle Moving

Page 2 of 6

Instructions
So far all of the SwinGame programs we have built contained a sequence of actions (such as
shape drawing) controlled by delays. However, this situation does not allow the user to interact
with the program. For example, the program is ended by a ‘hard coded’ delay. What if the
user wanted to look at the drawing for longer than specified in our delay, or for less time than
in our delay? What we need is for the window remains open until the user requests it to be
closed.
Another common feature that a user expects in programs like games is to be able to move
things around. For example, if the user presses the move right () arrow on the keyboard
then the character moves to the right. In this task you will create a program that uses control
flow mechanisms (such as repeat/until and if/then) to allow the program to respond to user in-
put (such as close window requests, keyboard actions, and mouse actions).
To do this we will be creating an event loop which calls procedures to recognise and respond
to user input (such as closing windows when requested and moving characters using the key-
board). Table 1 shows some of SwinGame's functions and procedures for working with input.

Table 1: Procedures to assist processing of user input in SwinGame

Function / Procedure Does
ProcessEvents (); Listens for user input. No input can be received unless this is called.

MouseX() : Single; X location of the mouse. A MouseY() function also exists.

MouseClicked(button) : Boolean; Was the mouse button clicked?

Buttons are LeftButton and RightButton

WindowCloseRequested() : Boolean; Has the user asked to close the Window?

KeyDown(key) : Boolean; Is the key currently held down?

Keys are in the format …Key eg AKey, LeftKey, UpKey, SpaceKey

KeyTyped(key) : Boolean; Was the key typed? (Pressed then released)

Hint: The navigation arrows on the keyboard are identified in SwinGame by UpKey,
DownKey, LeftKey and RightKey. So you can check for the user typing the ‘up’ arrow key
by using KeyTyped(UpKey)

Introduction to Programming Pass Task 2.3: Circle Moving

Page 3 of 6

1. Download the SwinGame Pascal - Project Template.zip file from Blackboard.
2. Extract the zip file to your code directory (e.g. Documents/Code)
3. Rename the Project Template folder to CharacterMoving
4. Open a Terminal window and navigate to your CharacterMoving directory.
5. Write the code to implement a basic SwinGame program called CharacterMoving using

the following code.

■ You need to use both SwinGame and sgTypes to get access to key codes

6. Notice the window closes after 5 seconds, as the program's instructions end. To correct
this we can add an event loop. Implement the following pseudocode in your Main.

■ The event loop will be located in Main, and will loop until the user closes the window.
■ Process Events needs to be called once each event loop to update SwinGame with

the actions that have occurred since the last time through the loop.

7. Switch back to the Terminal and compile and run the program. It should now remain open
until you close the window.

Note: We are adding another library to the uses specification in the program, sgTypes.
This will give us access to the key codes and mouse buttons.

Procedure: Main

Steps:
1: Open a Graphics Window with title 'Character Moving'

that is 800x600
2: Repeat
3: Process Events
4: Until Window Close is Requested

Introduction to Programming Pass Task 2.3: Circle Moving

Page 4 of 6

The event loop repeats code over and over as the program run. This now means that you can
create an interactive program. Inside this loop you can listen for user events and then update
the program's data.

8. Alter Main to draw a circle on the screen, using variables for the circle's x and y location.

9. Switch to the Terminal, compile and run the program. You should be able to see a green
circle in the centre of the screen.

■ The x and y variables in Main store all of the data for this game: the location of the cir-
cle. As these are the only variables in the "game" (which is being run by the steps in
the Main procedure), these are the only things that can change.

Note: To ensure a consistent game speed you can use RefreshScreen(60) to limit the
refresh rate to 60 frames per second (FPS)

Procedure: Main

Local Variables:
- x, y: Single data for the circle's location
Steps:
1: Open a Graphics Window with title 'Character Moving'

that is 800x600
2: Assign x the value 400
3: Assign y the value 300
4: Repeat
5: Process Events
6: Clear the Screen to ColorWhite
7: Fill a Circle using ColorGreen, at location x,y

with a radius 110
8: Refresh the Screen limiting it to 60 FPS
9: Until Window Close is Requested

Introduction to Programming Pass Task 2.3: Circle Moving

Page 5 of 6

The next step will involve using if statements to selectively run sections of your code. This can
be used to ensure the computer only runs certain code when a condition is met. For example,
we could only move the character to the left when the left arrow key is held down.
10. Alter Main to update the x variable when the user is holding down.This will...

■ Make x smaller if the user is holding down the left arrow key, which will move the circle
left

■ Make x larger if the user is holding down the right arrow key, which will move the circle
right

Procedure: Main

Local Variables:
- x, y: Single data for the circle's location
Steps:
1: Open a Graphics Window with title 'Character Moving'

that is 800x600
2: Assign x the value 400
3: Assign y the value 300
4: Repeat
5:

6:
7:
8:
9:

10:
11:

12:

Process Events

if the LeftKey Key is Down then
Assign x, the value x - 1

if the RightKey Key is Down then
Assign x, the value x + 1

Clear the Screen to ColorWhite
Fill a Circle using ColorGreen, at location x,y

with a radius 110
Refresh the Screen limiting it to 60 FPS

13: Until Window Close is Requested

11. Switch back to the Terminal and compile and run the program. You should be able to move
the circle using the left and right arrow keys.

12. Add code to use UpKey and DownKey to move the circle along the Y axis (up and down
the screen).

13. Switch back to the Terminal and compile and run the program. You should be able to move
the circle left, right, up, and down using the arrow keys.

Note: Control flow in this pseudocode is grouped based in indentation. Pay attention
when there is more than one statement within the control flow statement, as this is likely
to require a compound statement to group (i.e., begin ... end in Pascal)

Introduction to Programming Pass Task 2.3: Circle Moving

Page 6 of 6

14. If you keep your finger on the one arrow key long enough, the circle will disappear off the
edge of the screen.

15. Before addressing this problem, lets fix the use of the literal value 110 as the radius. In-
stead, add a constant named CIRCLE_RADIUS and set it to 110.

16. Alter Main to use the CIRCLE_RADIUS constant when it draws the circle.
17. Now, adjust the program to ensure that the circle remains on the screen.

18. Switch to the Terminal. Compile and run the program, and test that you cannot move the
circle off the screen to the left or right.

19. Now, change the radius of the circle to be 150. Compile and run the program again, and if
you have coded it correctly the circle should still be able to go right up to the edge of the
screen.

Once your program is working correctly you can prepare it for your portfolio.

Hint: When moving right you should only change the x value if the key is held down and
x is less than ScreenWidth() - the circle's radius. Eg:
if KeyDown(RightKey) and (x + CIRCLE_RADIUS < ScreenWidth()) then …

Tip: Avoid having "magic numbers" in your code. Numbers like 110 do not have as
much meaning as a constant like CIRCLE_RADIUS. Later when you read or change the
code these constants will make it easier to understand and change.

Tip: To find the width of the current screen you can call the SwinGame function
ScreenWidth(). ScreenHeight() will give you the height of the screen.

Hint: The left edge of the screen is at X 0.

	Overview
	Instructions

