
Faculty of Science, Engineering and Technology

Introduction to Programming
Distinction Task 1.1: Mandelbrot
Overview
The Mandelbrot provides an interesting challenge in order to determine how to zoom
out of the section of the Mandelbrot being shown to the user.

Purpose: Learn to put the different programming tools together.
Task: Create a Mandelbrot viewer program.
Time: This should be completed before the start of week 5, but may be completed

at a later date (see following note).
Resources: ■ Programming Arcana

Submission Details and Assessment Criteria
You must submit the following files to Doubtfire:
■ Program source code, and screenshot of the program in action.

Make sure that your task has the following in your submission:
■ Code must follow the Pascal coding convention used in the unit (layout, and use of case).
■ Must include the ability to zoom in and out of the Mandelbrot.

Note: If you are not currently up to date you should skip this task and return to it once
you are up to date with the Pass Tasks. Do not allow Distinction Tasks to delay you in
keeping up with the unit's Pass Tasks.

in to and

Introduction to Programming Distinction Task 1.1: Mandelbrot

Page 2 of 9

Instructions
The Mandelbrot set is a collection of complex numbers that can be visualised graphically. This
set is infinitely complex, giving complex and visually appealing images when displayed using
software.
The values within the Mandelbrot set can be shown graphically as seen in Figure 1. While in-
teresting, the nature of the Mandelbrot set is better explored when color is added to the num-
bers that lie outside the set. Figure 2 shows a part of the Mandelbrot set, illustrating the com-
plexity of the set.

Figure 1: Values in the Mandelbrot
set www.ddewey.net/mandelbrot

Figure 2: A zoomed in portion of the Mandelbrot
set from http://www.linesandcolors.com.

The algorithm to determine if a value is within the Mandelbrot set performs a check to see if x2

+ y2 is less than 22, x and y are then projected forward and checked again. This process is re-
peated over and over, and the value lies within the set when this process can be performed
infinitely. To create the visualisations shown, all pixels that lie in the Mandelbrot set are drawn
black, with those that lie outside the set are coloured based on the number of times the opera-
tion could be performed1 before the value exceeded the 22 limit.
The algorithm used to implement this visualisation of the Mandelbrot set is relatively simple,
given the complexity of the output. Read the programmers take on Manbelbrot on wikipedia at
http://en.wikipedia.org/wiki/Mandelbrot_set#For_programmers and then see if you can come
up with your own program structure to code this. Alternatively, the following pages describe a
suitable program structure you can use to implement your own Mandelbrot viewer using
SwinGame.
Once you have the code working and showing the full Mandelbrot set, implement zooming
when the user clicks the mouse button, allowing them to zoom in on the point selected, or
zoom out when they click the right button.

1 The repetition of a process is known as an iteration.

http://www.ddewey.net/mandelbrot
http://www.linesandcolors.com/
http://en.wikipedia.org/wiki/Mandelbrot_set#For_programmers

Introduction to Programming Distinction Task 1.1: Mandelbrot

Page 3 of 9

The Mandelbrot program has its functionality distributed across four functions/procedures, as
shown in the following structure chart. More details of each function and procedure follows.

Procedure/Function call

Return value/type

Parameter

■ The Main procedure opens a graphical window and then loop repeatedly until Window-
CloseReqested() is true. Each loop this will call ProcessEvents(), DrawMandelbrot(...)
and RefreshScreen().

■ DrawMandelbrot uses the MandelbrotColor function with SwinGame's DrawPixel func-
tion to draw the MandelbrotSet to the screen. This procedure will accept four parameters
(startMbX, startMbY, mbWidth and mbHeight). These values represent the area of the
Mandelbrot set that will be drawn to the screen. To view the entire Mandelbrot set you
need to pass in values startMbX -2.5, startMbY -1.5, mbWidth 4 and mbHeight 3, shown
in Figure 4.

■ A MandelbrotColor function that accepts two parameters (mbX and mbY) and returns a
color. The mbX and mbY parameters represent the coordinates within the Mandelbrot set
space, and will be floating point values (Double). These values will determine if the
mbX,mbY point is within the Mandelbrot, and based on this determine the color at the
indicated point.

■ An IterationColor function that accepts the number of iterations (integer) and returns a
color. This function will be used in the MandelbrotColor function to calculate the color of a
given iteration value.

Function /
Procedure

Main

DrawMandelbrot

Mandelbrot Color

Iteration Color

C
olor

st
ar

tM
bX

,
st

ar
tM

bY
,

m
bW

id
th

,
m

bH
ei

gh
t

m
bX

, m
bY

ite

ra
tio

ns

Introduction to Programming Distinction Task 1.1: Mandelbrot

Page 4 of 9

-2.5,-1.5
startMbX, startMbY

3
mbHeight

1.5,1.5

4
mbWidth

Figure 4: The space occupied by the Mandelbrot set.

Listing 1: Pseudocode for the Mandelbrot program

Program: Mandelbrot

Uses: SwinGame, sgTypes

Const: MAX_ITERATION with a value of 1000

Function: IterationColor
Function: MandelbrotColor
Procedure: DrawMandelbrot
Procedure: Main

Steps:
1: Call Main

Introduction to Programming Distinction Task 1.1: Mandelbrot

Page 5 of 9

Listing 2: Pseudocode for the Iteration Color function

Listing 3: Pseudocode for the Mandelbrot Color function

Function: Iteration Color

Returns: a Color
Parameters:
- iteration (Integer), the number of iterations performed

Local Variables:
- hue (Double) to store the hue of the calculated color
Steps:
1: If iteration >= MAX_ITERATION Then
2: Assign result, the value ColorBlack
3: Else
4: Assign to hue 0.5 + (iteration / MAX_ITERATION)
5: If hue > 1 Then
6: Assign to hue, the value hue - 1
7: Assign result, the value of HSBColor(hue, 0.8, 0.9)

Note: Watch the indentation in the above code… the last four statements are in the else
branch.

Function: Mandelbrot Color

Returns: a Color
Parameters:
- mbX (Double) the x value in Mandelbrot space
- mbY (Double) the y value in Mandelbrot space

Local Variables:
- xtemp, x, y (Double) store the altered x,y values
- iteration (Integer) the number of iterations performed
Steps:

1: Assign x and y, the values from mbX and mbY
3: Assign iteration, the value 0
4: While (x2 + y2 <= 4) AND (iteration < MAX_ITERATION)
5: Assign xtemp the value x2 y2 – + mbX
6: Assign y, the value 2 * x * y + mbY
7: Assign x, the value of xtemp
8: Increment iteration by 1
9: Assign result the value of IterationColor(iteration)

Introduction to Programming Distinction Task 1.1: Mandelbrot

Page 6 of 9

Procedure: Draw Mandelbrot

Parameters:
- startMbX, startMbY (Double) the location in mandelbrot
space of the top left corner of the screen.
- mbWidth, mbHeight (Double) the width and height of the
Mandelbrot space to be shown on the screen.

Local Variables:
- scaleWidth (Double) scale of screen to mandelbrot space
- scaleHeight(Double) scale of screen to mandelbrot space
- x, y (Integer) screen coordinates
- mx, my (Double) mandelbrot coordinates
- mbColor (Color) temporary storage for calculated color

Steps:
1: Assign scaleWidth, the value mbWidth / ScreenWidth()
2: Assign scaleHeight, mbHeight / ScreenHeight()
3: Assign x the value 0

4: While x is less than ScreenWidth()
5: Assign y, 0

6: While y is less than ScreenHeight()
7: Assign mx, startMbX + x * scaleWidth
8: Assign my, startMbY + y * scaleHeight
9: Assign mbColor, the value of calling

MandelBrotColor(mx, my)
10: Call DrawPixel (mbColor, x, y)
11: Increment y by 1 // end while y

12: Increment x by 1

Listing 4: Pseudocode for the Draw Mandelbrot procedure

Introduction to Programming Distinction Task 1.1: Mandelbrot

Page 7 of 9

Listing 5: Pseudocode for the Main procedure

1. Copy a new SwinGame project template to your Documents/Code directory and rename

the folder Mandelbrot
2. Implement each of the functions and procedures described above.
3. Switch to the Terminal and change into the project's directory. Compile using ./build.sh

and run using ./run.sh.
4. Implement zoom by changing the values of startMbX, startMbY, mbWidth, and mbHeight

so that the Mandelbrot zooms in when the user clicks with the left mouse button.
5. Switch to the Terminal and compile and run the program - you should be able to zoom in.
6. Add code to zoom back out when the user clicks the right mouse button.
7. Switch to the Terminal and compile and run the program - you should be able to zoom in

and out.

Procedure: Main

Local Variables:
- startMbX startMbY (Double) the location in mandelbrot
space of the top left corner of the screen.
- mbWidth, mbHeight (Double) width and height of the Man-

delbrot space shown on the screen.

Steps:
1: Assign initial values for mandelbrot coordinates and
size (-2.5, -1.5, 3, 4) — see Figure 6.
2: Open Graphics Window ('Mandelbrot', 320, 240)
3: Repeat
4: ProcessEvents ()
5: DrawMandelbrot(startMbX, startMbY,

mbWidth, mbHeight)
6: RefreshScreen()
7: Until WindowCloseRequested ()

Introduction to Programming Distinction Task 1.1: Mandelbrot

Page 8 of 9

You can implement zoom by altering the values in the startMbX, startMbY, mbWidth and mb-
Height variables. By reducing the width/height you zoom in, by increasing it you zoom out. You
need to adjust the startMbX and startMbY to move around in the Mandelbrot set. So zooming
involves both changing the size and location you are viewing.
Use SwinGame functions to determine when the user clicked the mouse button (Mouse-
Clicked) and the position of the mouse at the time (MouseX and MouseY). With this informa-
tion you can then alter the startMbX, startMbY, mbWidth and mbHeight values to zoom in on
the area clicked. The illustrations in Figures 5 and 6 are provided to assist you working out
how to calculate these new values.

Hint: When zooming in, make the new mbWidth and mbHeight half their current value,
and double these values when zooming out. Other values can be calculated using pro-
portions, see the figures on the following page.
For example, when zooming in:
newMbWidth := mbWidth / 2;

The location the user clicked would be (using the old mbWidth):
startMbX + MouseX() / ScreenWidth() * mbWidth

So the new startMbX would be that position, minus half of the new mandelbrot width (eg
- newMbWidth / 2).
The same calculation can be used to determine the y position, and similar steps can be
used to zoom out.
Remember to assign the mbWidth the newMbWidth after calculating the new start posi-
tion.

Introduction to Programming Distinction Task 1.1: Mandelbrot

Page 9 of 9

0,0

600

800,600

800

Figure 5: Illustration of the user clicking at 250,300 and the resulting area that will be shown. All
values are in pixels (screen coordinates).

-2.5,-1.5

3

1.5,1.5

4

Figure 6: Illustration matching Figure 1 but showing the values in Mandelbrot set coordinates.

250,300

-2.25,-0.75

1.5 -1.25,0

2

	Overview
	Instructions

