Faculty of Science, Engineering and Technology

Introduction to Programming
High Distinction Task 1.1: Maze Game

Overview

Understanding pointers can be challenging without a good example program to help you ex-
plore the topic. In this task you will create a maze for the player to explore in a text based ad-

venture style.

Purpose: Demonstrate that you can work with pointers to create a maze game.
Task: Complete the implementation of the Maze Game.
Time: This task should be completed before the start of week 11.

Resources: Prggramming Arcana
= Libraries and language details in cplusplus.com or other online sources

Submission Details

You must submit the following files to Doubtfire:
= Source code from the game.
» Screenshots of the game in action.

Hint: If you have problems with program crashing — make sure you are using the
my_string.str field and not using my_string directly when printing or copying strings.

Introduction to Programming High Distinction Task 1.1: Maze Game

Instructions

In this task you will complete a maze game program that makes use of pointers and dynamic
memory management. The programmer who started this was not confident with pointers, so
they have started the project but left the more complex parts for you to complete.

The following steps will guide you to complete this task.
1. Download the Maze Game starter from Doubtfire.

2. Review the Maze.txt file and draw up a graph (boxes and arrows) depicting how the
rooms are connected together with the various paths when this file is loaded.

3. Write up a data dictionary to outline the types in the supplied code.

Note: A data dictionary lists each of the custom types in a program. For enumerations it
lists the different values within the types, for records it lists all of the fields and describes
the what data each field will be storing.

4. Draw a structure chart to show the functions and procedures in the code and how they
call each other.

Tip: While creating the structure chart read through the code and work out what each
function and procedure is doing.

The developer has left some comments where things need to be fixed, along with some notes
on what they think needs to be done.

5. Open a terminal and compile and run the program. It should run but there will be no exits
in the first room.

6. Locate 7/ TODO: 1.

7. Atthis location you need to call the add_path procedure. Most of the parameters are setup
for you, but you need to get pointers to the from room and the to room.

Hint: To get the address of the room you need to use the & operator. It gives you the
address of the variable to its right. For example &my_variable

©

Once you have this call setup correctly, switch back to the Terminal and compile and run
your program. It should end with an error as add_path also needs fixing.

9. Locate 7/ TODO: 2.

10. At this location you need to call realloc. This is like malloc, but allows you to re-allocate
memory for your program. With add_path you need to re-allocate the space for the room's
exits.

Page 2 of 3

Introduction to Programming High Distinction Task 1.1: Maze Game

Hint: With realloc you need to pass in the original pointer and the new size eg:

new_values = (int*) realloc (expenses.values,
10 * sizeof(int));

This reallocates the expenses.values pointer to point to space for 10 integers. Notice it
does not store it in expenses.values, as if it does not work it returns NULL, leaving the
old memory allocation as it was.

11. Adjust the code to call realloc.

Note: Notice the pattern with realloc. The standard way of using this is to re-allocate the
space to a new pointer, check that it worked, and then copy the new pointer over the old.
This way if things go wrong you still have the old pointer.

12. Switch to the terminal and compile and run your program. Once it is working successfully
you should see a list of exits from the first room. However, you will not be able to move to
a new location.

13. Locate // TODO: 3.

This is the last piece of missing code. The developer was not sure how to move the player to a
new room. The player_room is a pointer that points to the room where the player is currently
located (think "which room? that room over there...").

14. Add the missing assignment statement that will change the player_room to point to the
destination of the player_room's exit that the player has chosen.

Tip: Not sure how this works? Do some hand execution.
= Draw some boxes on a piece of paper to represent the rooms.

= Add the title (maybe skip description, its not really involved), and the array of ex-
its.

= In each path_data in exits add two boxes for direction and destination (we can
ignore the others for now).

= Draw arrows from the destination box of a exit to a destination room.

= Draw a player_room variable and draw an arrow from it to the room you want to start
in.

= Test your code from here...

15. Switch to the Terminal and compile and run your program. Check that you can move
around the maze.

16. Relate the picture you draw in step 2 with the code structures in memory when the maze
program runs.

Page 3 of 3

	Overview
	Instructions

