
Faculty of Science, Engineering and Technology

Introduction to Programming
Pass Task 2.2: My Picture Drawing
Overview
Create a program that calls procedures to draw a picture to a window.

Purpose: Create a graphical program to explore the use of procedures, and to
understand that instructions are run in sequence.

Task: Create your own Picture Drawing program that draws something other than a
house which we use as the example. Submit to Doubtfire when complete.

Time: This task should be started in your third lab class and submitted for feedback
before the start of week 5.

Resources: ■ Chapter 1 of the Programming Arcana
■ Swinburne CodeCasts (YouTube Channel, iTunesU)

• Understanding Syntax Rules
• Programs and Sequence

■ Syntax Videos
• Introduction, Getting Started, Calling Procedures, and Creating Your

Own Procedures

Submission Details
You must submit the following files to Doubtfire:
■ Picture Drawing source code (GameMain.pas)

■ Screenshot of the Window showing your picture.
Make sure that your task has the following in your submission:
■ Your picture has at least 4 shapes, and is something other than a house.
■ Code layout - match the example for indentation and use of case.
■ The code must compile and the screenshot show it working on your machine.
■ The program must show a picture of some kind, bonus points for some creativity.

Introduction to Programming Pass Task 2.2: Picture Drawing

Page 2 of 9

Instructions
For this task you will create a program that draws a scene using primitive shapes (triangles,
rectangles, and circles).
The goal of this exercise is to learn a little about how to create a program using the SwinGame
Software Development Kit (SDK). SwinGame is a development environment that makes it
easy to create programs that use graphics, sounds, animations, networking, and other aspects
relevant to creating small interactive games.
When building a program using SwinGame you need to start with a SwinGame Project Tem-
plate. This template contains the necessary development environment and code that you can
make use of.
1. Download the Pass Task 2.2 code from the Resources for this task. This contains

everything you need to create your own programs that use the SwinGame SDK.
2. Extract the zip file to your code directory (e.g. Documents/Code)
3. Open the PictureDrawing folder and you should see the following files:

■ The clean.sh, build.sh and run.sh scripts. These contain bash commands you will
use to clean up the project, compile (or build) the project, and run your program.

■ The src folder contains your program’s source code
■ The lib folder contains the SwinGame code
■ The Resources folder contains images, sounds, and other resources you want to use.

Introduction to Programming Pass Task 2.2: Picture Drawing

Page 3 of 9

4. Open the PictureDrawing.pas file in the src folder using Sublime Text. It is a little empty
at the moment, but the uses SwinGame code gives you access to the SwinGame library.

5. Compile and run the current code in PictureDrawing.pas by doing the following:
■ Open a Terminal window (or use one you already have open)
■ Change into the PictureDrawing directory using the cd command
■ Compile the template program using ./build.sh
■ Run your program using ./run.sh … it doesn’t do much but it should start and stop

without error.

Before adding to the program we need to review how drawing works in computers, and how
you can draw using SwinGame.

Tip: Although the code is stored in the src directory, you need to compile and run
SwinGame programs from the directory containing the build.sh and run.sh commands.

Tip: When you first open a .pas (or .sh) file from Windows Explorer or Finder, your op-
erating system might not know what program to open it with. It is handy to set the default
program for .pas files to your favourite text editor. See the Top Tips Guide for how to do
this.

Note: The ./build.sh is a Bash script, it is a saved list of commands you could type at
the terminal yourself - this just saves you time. This Bash script was written especially for
compiling SwinGame. It calls the compiler for you, as well as copying across the files you
need for the program to run.

Introduction to Programming Pass Task 2.2: Picture Drawing

Page 4 of 9

Opening a Graphics Window
In SwinGame you can open a Window to draw into. To open the window you call the Open
Graphics Window procedure, and pass it the window’s title, its width and its height. For ex-
ample

OpenGraphicsWindow('House Drawing', 800, 600);

will open a graphics window 800 px wide and 600 px high with the title “House Drawing” (see
Figure 1. Please note that the house and hill are drawn by additional code).

Figure 1: Example of SwinGame graphics window and house drawing

Introduction to Programming Pass Task 2.2: Picture Drawing

Page 5 of 9

Pixels and Shape Drawing
The images you see on your computer’s screen are made up of dots called pixels: picture el-
ements. The screen has many pixels arranged into a grid (rows and columns), with each pixel
having its own unique location (a combination of an x and y value), and color (Note: In pro-
gramming we will be using the American spelling of colour).
Figure 2 shows an example of two rectangles (one filled, one outlined). The top left corner of
the screen is at row (x) 0 and column (y) 0, and these numbers increase as you go to the right
and down the screen.

Figure 2: Pixels are organised into columns (x) and rows (y).

Positions on the screen are determined using two values, one for x and the other for y. The x
value determines the number of pixels from the left side of the screen. The y value determines
the number of pixels from the top of the screen.
For example: the magenta rectangle is drawn at 10, 1. This means its x value is 10 and its y is
1. This rectangle is drawn 10 pixels from the left of the screen, and its 1 pixel from the top.

Introduction to Programming Pass Task 2.2: Picture Drawing

Page 6 of 9

To draw a shape on the screen with SwinGame you need start by telling the computer what
color to draw it and where to draw it (i.e., the x y coordinates). Different shapes will require
additional information such as width and height for rectangles and radius for circles.
All of the shape drawing operations in SwinGame take a number of parameter values:

■ The color to draw the shape. The built in colors you can use include ColorWhite, Color-
Green, ColorBlue, ColorBlack, ColorRed, ColorYellow, ColorPink, ColorTurquoise, Col-
orGrey, ColorMagenta, ColorLightGrey and many others.

■ An x value, representing the x position of the shape (column). This is a number of pixels
from the left edge of the screen. Larger values are further to the right.

■ A y value, representing the y position of the shape (row). This is a number of pixels from
the top edge of the screen. Larger values are further down the screen.

■ Values for the size of the shape, these will differ depending on the kind of shape being
drawn (e.g., rectangle has a width and height, as does ellipse).

Table 1 shows the parameters for the different shapes you can draw with SwinGame, an ex-
ample procedure call is also shown.

Procedure Example
ClearScreen(color) ClearScreen(ColorWhite);

DrawCircle(color, x, y, radius) DrawCircle(ColorRed, 50, 100, 25);

FillCircle(color, x, y, radius) FillCircle(ColorRed, 50, 100, 20);

DrawRectangle(color, x, y, width, height) DrawRectangle(ColorGreen, 100, 150, 30, 60);

FillRectangle(color, x, y, width, height) FillRectangle(ColorGreen, 100, 160, 10, 40);

DrawTriangle(color, x1, y1, x2, y2, x3, y3) DrawTriangle(ColorBlue, 150, 100, 150, 200, 175, 200);

FillTriangle(color, x1, y1, x2, y2, x3, y3) FillTriangle(ColorBlue, 155, 135, 155, 195, 170, 195);

DrawEllipse(color, x, y, width, height) DrawEllipse(ColorBlack, 200, 100, 50, 160);

FillEllipse(color, x, y, width, height) FillEllipse(ColorBlack, 210, 110, 30, 140);

DrawLine(color, x1, y1, x2, y2) DrawLine(ColorMagenta, 0, 300, 800, 300);

Table 1: SwinGame shape drawing procedures and their parameters

Introduction to Programming Pass Task 2.2: Picture Drawing

Page 7 of 9

Displaying Shapes using Double Buffering
In a House Drawing program like the one used to create Figure 2, the computer executes the
code to draw the individual shapes one at a time in the order they appear in the code. Howev-
er, we don’t want each element to appear individually, we just want the whole house to appear
at once. SwinGame uses a technique called Double Buffering to enable this. When double
buffering, the computer first draws the shapes, then waits for a command to display the
shapes to the user. With SwinGame, the shapes are all shown together when the program
calls the Refresh Screen procedure. See Figure 3 for an illustration of how this procedure
should be used.

Figure 3: Using RefreshScreen in SwinGame

The house drawing program shown in Figure 2 and 3 is complete once the shapes are drawn.
To keep your program running a little longer you can add a call to the Delay procedure. This
will cause the computer to wait a specified number of milliseconds (1000th of a second) before
it executes the next command. For example, use Delay(5000) to have the program wait 5 sec-
onds before it goes to the next instruction.

Tip: Using a Delay will help you take a screenshot before your drawing disappears!!

Introduction to Programming Pass Task 2.2: Picture Drawing

Page 8 of 9

In summary, to display a drawing like that shown in Figure 2 using SwinGame requires a pro-
gram that executes the following steps.

1. Clear the screen of any previous drawing (using ClearScreen())
2. Draw the shapes (e.g., Fill Ellipse, Fill Triangle, Fill Rectangle)
3. Display the shapes (using RefreshScreen())
4. [Optional] Delay executing the next command (e.g., Delay(5000))

Here is some example code that draws a house. This code demonstrates the convention you
need to use for writing Pascal programs - this covers the general look and feel of the code. No-
tice the keywords like program, uses, begin, and end are all in lowercase. The program, unit
(SwinGame) and procedure identifiers (eg: OpenGraphicsWindow) are all in PascalCase
where the first letter of each word is uppercase and the others are lowercase. Also notice the
indentation. The instructions within the program are all tabbed in four spaces from the left, see
how this makes it easier to see that they belong inside the program (inside its begin … end
code).

Tip: Black is the default ClearScreen() colour. Add a colour parameter to
change the screen colour (e.g., ClearScreen(ColorWhite) will draw a white
screen).

Introduction to Programming Pass Task 2.2: Picture Drawing

Page 9 of 9

Create your own program that draws a picture using the procedures from Table 1. You must
draw something other than a house, for example you could draw a car with some rectangles
and circles.
Once you are happy with your Picture Drawing program you can prepare it for your portfolio.
This work can be placed in your portfolio as evidence of what you have learnt.

1. Use Skitch (or your preferred screenshot program) to take a screenshot of your pro-
gram in action.

2. Login to Doubtfire and submit your code and screenshot to Pass Task 2.2.
3. Remember to save the document and backup your work! Storing your work in multiple

locations will help ensure that you do not lose anything if one of your computers fails, or
you lose your USB Key.

Note: This is another tasks you need to submit to Doubtfire. Check the assessment
criteria for the important aspect your tutor will check.

	Overview
	Instructions
	Opening a Graphics Window
	Pixels and Shape Drawing
	Displaying Shapes using Double Buffering

