
Faculty of Science, Engineering and Technology

Object Oriented Programming
Pass Task 1.1: Object Oriented Hello World
Overview
As always, "Hello World" is the first program you should write in a new language or with a new
set of tools. In this tasks you will create an object oriented version of this classic program.

Submission Details
You must submit the following files to Doubtfire:
■ C# code files of the classes created.
■ Screenshot of output.
■ Screenshot of the setup of the project within Xamarin.

Purpose: Demonstrate that you have got started with Xamarin and C#.
Task: Create a hello world program and extend it to output custom messages for

different user names.
Time: This task should be completed before the start of week 2.
Resources: ■ C# Station Tutorials

■ Lesson 1 to Lesson 5
■ Encapsulation and Properties

■ Tutorials Point
■ C# Programming Tutorials
■ C# Programming Quick Guide

■ Any C# books chapters on:
■ Types, Operators, Control Flow, Method declarations

■ UML Class Diagrams Tutorial by Robert C. Martin
■ Swinburne Videos on iTunesU

■ Quick Start with C-style syntax
■ Introducing Objects

http://www.csharp-station.com/Tutorial/CSharp/lesson01
http://www.csharp-station.com/Tutorial/CSharp/Lesson05
http://www.csharp-station.com/Tutorial/CSharp/Lesson19
http://www.csharp-station.com/Tutorial/CSharp/Lesson10
http://www.tutorialspoint.com/csharp/index.htm
http://www.tutorialspoint.com/csharp/csharp_quick_guide.htm
http://www.objectmentor.com/resources/articles/umlClassDiagrams.pdf
https://itunes.apple.com/au/podcast/introduction-to-c-style-syntax/id431558221?i=195833359&mt=2
https://itunes.apple.com/au/podcast/module-2-introducing-objects/id431558221?i=195833358&mt=2

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

Instructions
The first task includes the steps needed for you to install the tools you will need in this unit.
You will then use these tools to create the classic ‘Hello World’ program.
1. Install the tools you need to get started.

■For Linux operating systems:
■ Install Mono MDK and GTK# via apt-get or from go-mono.com
■ Install MonoDevelop via apt-get or from monodevelop.com

"
■For Mac and Windows operating systems:

■ Install Visual Studio Community from www.xamarin.com/download (Xamarin has now
been incorporated into Visual Studio) using the unified installer. Note that you do not
need the Android or iOS packages for this unit (they take up a lot of space!).

"
2. If you don’t already have one, make a directory (i.e., a ‘folder’) to store your code (e.g.,

Documents/Code/Lab1). On a Swinburne computer you may wish to use a directory on
your student drive or a USB storage device.

■ Navigate to your Documents directory in Finder or File Explorer
■ Right click in the Documents directory and select New Folder, name it Code

3. Open Xamarin/Visual Studio

Hint: From the command line: sudo apt-get install fpc monodevelop  
 monodevelop-nunit build-essentials

Note: If using the computers (Macs) in labs, you should launch Xamarin (there is no
visual studio installed on these). It will look and work just the same

Page � of �2 13

http://www.go-mono.com/mono-downloads/download.html
http://monodevelop.com/Download
http://www.xamarin.com/download

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

This is an Integrated Development Environment. Click on New Project and you should see
something like:

IDEs combine together the resources you need to develop programs using the C# program-
ming language. This includes a syntax highlighting editor (like Sublime Text), with the compiler
(like fpc and gcc), and a debugger. This helps make the process of building programs simpler.

Page � of �3 13

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

Lets start with a really simple HelloWorld to see that everything is setup correctly.
4. From the File menu choose New Solution.

■Choose .Net under Other, and Console Project (with C#). Then click Next.
■Name your project: HelloWorld
■Choose the Location where you want the project saved. (see above image)

"
5. Press Create to create your project. You should see the IDE change to show you the de-

tails of the solution you have created.

Note: Xamarin uses Solutions and Projects to manage the files associated with your
program. A Project is equivalent to a Program. The Solution may contain many
Projects.

Page � of �4 13

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

6. Review the IDE and get familiar with where things are:

■You should be able to see the Solution, Project in the Solution tab to the left.
■ In the solution tab you should be able to see the files in the Project.
■ In the main area you should be able to see your code.
■ In the toolbar you should see a large Play button

"
7. Run the program… click the Play button.

"
8. The program will run, but the output is likely is disappear before you can read it… Alter the

code to appear as follows:

Tip: If not already hidden, you can get some more screen space by Auto Hiding the
Properties and Toolbox tabs on the right. You wont be using these, so best hide them
away. You can also Auto Hide the Errors, Tasks, and Application Output if they are
showing. Hover over the tops at the top to see the Auto Hide button.

Note: This will run the C# compiler for you. The options for the compiler are all provided
in the Project's settings. It then runs the program for you, and the code will output Hello
World.

Page � of �5 13

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

"
This program is using basic structured programming concepts, so you should be able to un-
derstand how it works in general.
■Main is a method (procedure) that is the entry point for the program, so the computer be-

gins running the instructions here when the program starts.
■The code runs in sequence and this demonstrates two method calls (like procedure calls).

■Console.WriteLine writes something to the Terminal - like WriteLn or printf
■Console.ReadLine reads something from the Terminal - like ReadLn or scanf 

Page � of �6 13

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

Object oriented programs work a little differently to procedural programs. An object oriented
program consists of objects that know and can do things. When creating an object oriented
program you design the kinds of objects you want, the things they will know, and the things
they can do. The program then coordinates the actions of these objects by sending them
messages asking them to do things or to return you things they know.
While this code is a "Hello World" program, it is not very "object oriented". We should be able
to create an object and have it output the message for us.

"
In C#, each object is created by a class. The class is a special kind of object which you can
send the new message to, to get it to create and initialise a new object for you. The code with-
in the class describes what objects created by that class looks like.

"
To create your own objects you first need to create a class, and then use that class to create
an object for you.
9. Read the UML Class Diagrams Tutorial by Robert C. Martin and ensure that you fully un-

derstand the following UML Class Diagram. It describes a class and the features you
need to implement for it.
■The overall rectangle represents a Message class
■The top part has the name of the class
■The middle part contains the things the object knows. These become data within the ob-

ject, much like the fields of a record or struct. So the message class has a text field that
stores a reference to a String object.

■The lower part contains the things the object can do. These become methods within the
object, much like functions and procedures. So the Message has two methods, the first is
a special constructor and the second is a Print method. 

"

Note: In the current code Console is an object that we are asking to WriteLine and
ReadLine. Console is a class which is a special kind of object.

Tip: You can think of a class as being an object blueprint. It defines the structure of ob-
jects it creates.

+ Message(string txt)
+ Print ()

- text: string
Message

Page � of �7 13

http://squall.cs.ntou.edu.tw/cpp/UMLIntro/umlClassDiagrams.pdf

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

10. Create a new file for your C# class.
■Right click the Project in the Solution tab, select New File 

11. Choose an Empty Class and name it Message. Click New to create it.  

"  

12. You should now see a new file, and the start of the Message class' code.

"
Page � of �8 13

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

Now we have the start of the class we need to add a field to store the text that the object
"knows". A field is a variable declared within the class' scope - within its code.

"

13. Add a text field to the Message class. It should appear as shown below in your code. This
tells the class that objects of the Message type need to know a string they call "text":

"

"
The other code in the Message class is a special method called a constructor. The construc-
tor is what new calls to initialise the object when it is created. The UML Diagram indicates that
Message's constructor should have a string parameter. This parameter can then be used to
initialise the object's text field.
14. Update the constructor to accept a string parameter named txt.
15. Assign the object's text field the value from the txt parameter. The code should appear as

shown below.

"

"  

Tip: Store the things the object knows (its fields) at the top of the class. This helps
match the UML, and means it is easy to locate this when you need it.

Note: Objects encapsulate the things they know and can do. You specify a scope modi-
fier to indicate what things can see the fields and methods within a class. The public modi-
fier means everyone can see it, private means only this class. All fields should be private.

Note: Within the object's methods you can access the object's fields and other methods
directly. Here text refers to the object's text field.

Page � of �9 13

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

16. Now add a Print method to the Message class. It will use Console.WriteLine to output
the object's text. The code should appear as follows:

"

"
At this point you have created the Message class. It can create objects for us that can print
their messages to the Terminal.
17. Switch back to your Program.cs file.

"
18. Inside the Main method, add a new Message local variable called myMessage.
19. Assign to myMessage, the result of asking Message for a new object with the text "Hello

World - from Message Object".
20. Ask your myMessage object to Print itself out.
21. Delete the call in Main to Console.WriteLine(…). The code should appear as shown on the

following page.

"

Tip: Picture a Message object as a capsule that contains a text field and a Print
method. When you ask it to print, the object run's the steps inside the Print method. Print
is inside the capsule so it can access the object's text field.

Note: Notice the program is run from a MainClass. This is a class just like Message is.
However, Main is a special method - a static method. This means that the method exists
on the MainClass itself, rather than on objects created from the class. This allows C# to
use this as the entry point. It asks the MainClass class to run its Main method.
You could call Main yourself using MainClass.Main(…), this is how you can access the
Console.WriteLine and Console.ReadLine methods. They are static methods of the Con-
sole class.

Note: You can create a Message object using new Message("Hello").

Page � of �10 13

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

"
22. Run your program…
23. Now try the following features of the debugger:

■ Add a breakpoint, click in the margin next to the code that creates your Message object
in MainClass. You should see a red dot appear if you have clicked in the right location.
Alternatively select the line of code and from the Run menu choose Toggle Breakpoint.
A breakpoint tells the debugger to stop at this point and let you inspect the program.

■ Now run the program in the debugger using Run > Start Debugging. The program
should stop when it gets to the breakpoint. You should be able to see the Call Stack, and
the values of Locals. Watch the values of these change as the program runs. You can
also hover over variables, or enter your own expressions to Watch.

■ Press the Step Into button (or choose from the Run menu). This will advance the pro-
gram one statement at a time. You can also try stepping over and out of a method, and
continuing when you no longer want to step.

You now have an object oriented "Hello World" program.

Page � of �11 13

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

24. Extend the program to have it test user names - a Silly name testing program.
■Create 4 message variables, and 4 different message objects.
■Get the user to enter their name, and output one of the messages for that user. For ex-

ample (use your own name and names of your friends, not these names):
■ "Chris" gets the message "Welcome back oh great educator!"
■ "Fred" gets the message "What a lovely name"
■ "Wilma" gets "Great name"
■ anyone else gets "That is a silly name"

"
See the following pseudocode for the above example. Change the example to use your own
names and messages.

"

Tip: You can read a value into a string variable using Console.ReadLine(). Eg:
name = Console.ReadLine();

Method: Main

Local Variables:
 - myMessage: a reference to a Message object
 - messages: an array references to 4 Message objects
 - name: a reference to a String object

Steps:
 1: Assign myMessage a new Message with text "Hello World…"
 2: Tell myMessage to Print
 3: Assign messages at index 0, a new Message with text "…"
 4: Assign messages at index 1, a new Message with text "…"
 5: …
 6: Tell Console to Write "Enter name: "
 7: Assign name, the result from asking Console to ReadLine
 8: If asking name ToLower returns "chris" then
 9: Tell messages[0] to Print
10: Else if asking name ToLower returns "andrew" then
11: Tell messages[1] to Print
12: …

Page � of �12 13

Object Oriented Programming Pass Task 1.1 - Object Oriented Hello World

Now that the program is complete you can prepare it for your portfolio. This can be placed in
your portfolio as evidence of what you have learnt.

1. Review your code and ensure it is formatted correctly.
2. Run the program and use Skitch (or your preferred screenshot program) to take a

screenshot of the Terminal showing the program's output.
3. Insert a breakpoint within your program and run the debugger. Take a screenshot of the

IDE showing the call stack and the code paused within the Print method of the Mes-
sage class.

4. Save and backup your work to multiple locations!
■ Once you get things working you do not want to lose them.
■ Work on your computer’s storage device most of the time... but backup your work

when you finish each task.
■ Use Dropbox or a similar online storage provider, as well as other locations.
■ USB keys and portable hard drives are good secondary backups... but can be lost/

damaged (do not rely upon them).

"

Assessment Criteria
Make sure that your task has the following in your submission:
■ Your program prints hello world, and custom messages for at least 4 people. (funny = bonus)
■ Code layout - match the example for indentation and use of case.

■ Classes and methods are PascalCase
■ Fields, variables, and parameters are camelCase (fields may be prefixed with a _ to

make them easier to identify - eg: _text rather than just text)
■ Constants are UPPER_CASE

■ The code must compile and the screenshot show it working on your machine.

Note: This is one of the tasks you need to submit to Doubtfire. Check the assessment
criteria for the important aspect your tutor will check.

Page � of �13 13

http://evernote.com/skitch/

