
Page 1 of 16

Logging and Monitoring Web Server Activity

Lesson 13b

This lesson describes how the logging system in Apache works and how you can

customize it which information to store and where to do it. Additionally, you will

learn a quick way to use PHP and MySQL to log specific items of interest to you,

outside the realm of the Apache log files.

In this lesson, you will learn how to

 Understand Apache log formats and logging levels

 Rotate and analyze Apache logs

 Interpret common errors that might appear in your logs

 Create scripts that log specific items to database tables

 Create custom reports based on these logging tables

Page 2 of 16

Standard Apache Access Logging

Using Apache's basic logging features, you can keep track of who visits your Web

sites by logging accesses to the servers hosting them. You can log every aspect of the

browser requests and server responses, including the IP address of the client, user, and

resource accessed. You need to take three steps to create a request log:

1. Define what you want to log your log format.

2. Define where you want to log it your log files, a database, an external program.

3. Define whether or not to log conditional logging rules.

The next few sections will take a closer look at these steps.

Deciding What to Log

As well as logging nearly every aspect associated with the request, you can define

how your log entries appear by creating a log format. A log format is a string that

contains text mixed with log formatting directives. Log formatting directives start

with a % and are followed by a directive name or identifier, usually a letter indicating

the piece of information to be logged.

When Apache logs a request, it scans the string and substitutes the value for each

directive. For example, if the log format is This is the client address %a, the

log entry is something like This is the client address 10.0.0.2. That is, the

logging directive %a is replaced by the IP address of the client making the request.

Table 1 provides a comprehensive list of all formatting directives.

Table 1. Log Formatting Directives

Formatting

Options

Explanation

Data from the

Client

%a Remote IP address, from the client.

%h Hostname or IP address of the client making the request.

Whether or not the hostname is logged depends on two factors:

The IP address of the client must resolve to a hostname via a

reverse DNS lookup, and Apache must be configured to do that

lookup using the HostNameLookups directive, explained later

in this lesson. If these conditions are not met, the IP address of

the client will be logged instead of the hostname.

%l Remote user, obtained via the identd protocol. This option is

Page 3 of 16

not very useful because this protocol is not supported on the

majority of the client machines.

%u Remote user, from the HTTP basic authentication protocol.

Data from the

Server

%A Local IP address, from the server.

%D Time it took to serve the request, in microseconds.

%{env_variable}
e

Value for an environment variable named env_variable

(there are many).

%{time_format}t Current time. If {time_format} is present, it will be

interpreted as an argument to the Unix strftime function. See

the logresolve Apache manual page for details.

%T Time it took to serve the request, in seconds.

%v Canonical name of the server that answered the request.

%V Server name according to the UseCanonicalName directive.

%X Status of the connection to the server. A value of x means the

connection was aborted before the server could send the data.

A + means the connection will be kept alive for further requests

from the same client. A - means the connection will be closed.

Data from the

Request

%{cookie_name} C Value for a cookie named cookie_name.

%H Request protocol, such as HTTP or HTTPS.

%m Request method such as GET, POST, PUT, and so on.

%{header_name} i Value for a header named header_name in the request from the

client. This information can be useful, for example, to log the

names and versions of your visitors' browsers.

%r Text of the original HTTP request.

%q Query parameters, if any, prefixed by a ?.

%U Requested URL, without query parameters.

%y Username for the HTTP authentication (basic or digest).

Data from the

Response

%b, %B Size, in bytes, of the body of the response sent back to the

client (excluding headers). The only difference between the

options is that if no data was sent, %b will log a - and %B will

log 0.

Page 4 of 16

%f Path of the file served, if any.

%t Time when the request was served.

%{header_name} o Value for a header named header_name in the response to the

client.

%>s Final status code. Apache can process several times the same

request (internal redirects). This is the status code of the final

response.

The Common Log Format (CLF) is a standard log format. Most Web sites can log

requests using this format, and the format is understood by many log processing and

reporting tools. Its format is the following:

"%h %l %u %t \"%r\" %>s %b"

That is, it includes the hostname or IP address of the client, remote user via identd,

remote user via HTTP authentication, time when the request was served, text of the

request, status code, and size in bytes of the content served.

NOTE:

You can read the Common Log Format documentation of the original W3C server at

http://www.w3.org/Daemon/User/Config/Logging.html.

The following is a sample CLF entry:

10.0.0.1 - - [26/Aug/2004:11:27:56 -0800] "GET / HTTP/1.1" 200 1456

You are now ready to learn how to define log formats using the LogFormat directive.

This directive takes two arguments: The first argument is a logging string, and the

second is a nickname that will be associated with that logging string.

For example, the following directive from the default Apache configuration file

defines the CLF and assigns it the nickname common:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

You can also use the LogFormat directive with only one argument, either a log format

string or a nickname. This will have the effect of setting the default value for the

logging format used by the TRansferLog directive, explained in "Logging Accesses

to Files" later in this lesson.

http://www.w3.org/Daemon/User/Config/Logging.html

Page 5 of 16

The HostNameLookups Directive

When a client makes a request, Apache knows only the IP address of the client.

Apache must perform what is called a reverse DNS lookup to find out the hostname

associated with the IP address. This operation can be time-consuming and can

introduce a noticeable lag in the request processing. The HostNameLookups directive

allows you to control whether to perform the reverse DNS lookup.

The HostNameLookups directive can take one of the following arguments: on, off, or

double. The default is off. The double lookup argument means that Apache will

find out the hostname from the IP and then will try to find the IP from the hostname.

This process is necessary if you are really concerned with security, as described in

http://httpd.apache.org/docs/current/mod/core.html#hostnamelookups. If you are

using hostnames as part of your Allow and Deny rules, a double DNS lookup is

performed regardless of the HostNameLookups settings.

If HostNameLookups is enabled (on or double), Apache will log the hostname. This

does cause extra load on your server, which you should be aware of when making the

decision to turn HostNameLookups on or off. If you choose to keep HostNameLookups

off, which would be recommended for medium-to-high traffic sites, Apache will log

only the associated IP address. There are plenty of tools to resolve the IP addresses in

the logs later. Refer to the "Managing Apache Logs" section later in this lesson.

Additionally, the result will be passed to CGI scripts via the environment variable

REMOTE_HOST.

The IdentityCheck Directive

At the beginning of the lesson, we explained how to log the remote username via the

identd protocol using the %l log formatting directive. The IdentityCheck directive

takes a value of on or off to enable or disable checking for that value and making it

available for inclusion in the logs. Because the information is not reliable and takes a

long time to check, it is switched off by default and should probably never be enabled.

We mentioned %l only because it is part of the CLF. For more information on the

identd protocol, see RFC 1413 at https://www.ietf.org/rfc/rfc1413.txt.

Status Code

You can specify whether to log specific elements in a log entry. At the beginning of

the lesson, you learned that log directives start with a %, followed by a directive

identifier. In between, you can insert a list of status codes, separated by commas. If

the request status is one of the listed codes, the parameter will be logged; otherwise, a

- will be logged.

For example, the following directive identifier logs the browser name and version for

malformed requests (status code 400), and requests with methods not implemented

(status code 501). This information can be useful for tracking which clients are

causing problems.

%400,501{User-agent}i

http://httpd.apache.org/docs/current/mod/core.html#hostnamelookups
https://www.ietf.org/rfc/rfc1413.txt

Page 6 of 16

You can precede the method list with an ! to log the parameter if the methods are

implemented:

%!400,501{User-agent}i

Logging Accesses to Files

Logging to files is the default way of logging requests in Apache. You can define the

name of the file using the TRansferLog and CustomLog directives.

The transferLog directive takes a file argument and uses the latest log format

defined by a LogFormat directive with a single argument (the nickname or the format

string). If no log format is present, it defaults to the CLF.

The following example shows how to use the LogFormat and transferLog directives

to define a log format that is based on the CLF but that also includes the browser

name:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{User-agent}i\""

TransferLog logs/access_log

The CustomLog directive enables you to specify the logging format explicitly. It takes

at least two arguments: a logging format and a destination file. The logging format

can be specified as a nickname or as a logging string directly.

For example, the directives

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{User-agent}i\"" myformat

CustomLog logs/access_log myformat

and

CustomLog logs/access_log "%h %l %u %t \"%r\" %>s %b \"%{User-

agent}i\""

are equivalent.

Logging Environment Variables with CustomLog

The CustomLog directive accepts an environment variable as a third argument. If the

environment variable is present, the entry will be logged; otherwise, it will not. If the

environment variable is negated by prefixing an ! to it, the entry will be logged if the

variable is not present.

The following example shows how to avoid logging images in GIF and JPEG format

in your logs:

Page 7 of 16

SetEnvIf Request_URI "(\.gif|\.jpg)$" image

CustomLog logs/access_log common env=!image

NOTE:

The regular expression used for pattern matching in this and other areas of the

httpd.conf file follow the same format for regular expressions in PHP and other

programming languages.

Logging Accesses to a Program

Both transferLog and CustomLog directives can accept an executable program,

prefixed by a pipe sign |, as an argument. Apache will write the log entries to the

standard input of this program. The program will, in turn, process the input by logging

the entries to a database, transmitting them to another system, and so on.

If the program dies for some reason, the server makes sure that it is restarted. If the

server stops, the program is stopped as well. The rotatelogs utility, bundled with

Apache and explained later in this lesson, is an example of a logging program.

As a general rule, unless you have a specific requirement for using a particular

program, it is easier and more reliable to log to a file on disk and do the processing,

merging, analysis of logs, and so on, at a later time, possibly on a different machine.

NOTE:

Make sure that the program you use for logging requests is secure because it runs as

the user Apache was started with. On Unix, this usually means root because the

external program will be started before the server changes its user ID to the value of

the User directive, typically nobody or www.

Standard Apache Error Logging

Apache can be configured to log error messages and debugging information, in

addition to client requests. In addition to errors generated by Apache itself, CGI errors

can be logged.

Each error log entry is prefixed by the time the error occurred and the client IP

address or hostname, if available. As with HTTP request logging, you can log error

information to a file or program. On Unix systems, you can also log to the syslog

daemon. On Windows, errors can be logged in the Windows event log and would then

be viewable via the Windows Event Viewer. Use the ErrorLog directive to define

where you want your logs to go.

Page 8 of 16

Logging Errors to a File

A file argument indicates the path to the error log file. If the path is relative, it is

assumed to be relative to the server root. By default, the error log file will be located

in the logs directory and will be named error_log on Unix and error.log on

Windows. The following is an example:

ErrorLog logs/my_error_log

Logging Errors to a Program

You can specify the path to a program, prefixed by a pipe |. Apache will log errors to

the standard input of the program, and the program will further process them. The

following is an example:

ErrorLog "|/usr/local/bin/someprogram"

The syslog Daemon Argument

On a Unix system, if you specify syslog as an argument, you can log error messages

to the Unix system log daemon syslogd. By default, log errors are logged to the

syslog facility local7. The facility is the part of the system generating the error. You

can specify a facility by providing syslog: facility as an argument. Examples of

syslog facilities are mail, uucp, local0, local1, and so on. For a complete list,

look at the documentation for syslog included with your system (try man syslogd or

man syslogd.conf at the command line). The following is an example of logging to

syslog:

ErrorLog syslog:local6

The LogLevel Directive

The error information provided by Apache has several degrees of importance. You

can choose to log only important messages and disregard informational or trivial

warning messages. The LogLevel directive takes an error-level argument. Only errors

of that level of importance or higher will be logged.

Table 2 specifies the valid values for the LogLevel directive, as specified by the

Apache documentation. By default, the LogLevel value is warn. That should be

enough for most Apache installations. If you are trying to troubleshoot a specific

configuration, you can alter the level to debug.

Page 9 of 16

Table 2. LogLevel Options as Described in the Apache Documentation

Setting Description Example

emerg Emergenciessystem is

unusable
Child cannot open lock file. Exiting.

alert Action must be taken

immediately

getpwuid: couldn't determine user name

from uid.

crit Critical conditions socket: Failed to get a socket, exiting

child.

error Error conditions Premature end of script headers.

warn Warning conditions Child process 1234 did not exit, sending

another SIGHUP.

notice Normal but significant

conditions

httpd: caught SIGBUS, attempting to dump

core in...

info Informational Server seems busy, (You may need to

increase StartServers, or

Min/MaxSpareServers)...

debug Debug-level messages Opening config file...

Managing Apache Logs

Apache provides several tools for managing your logs. Other Apache-specific third-

party tools are available and are mentioned here. Because Apache can log requests in

the CLF, most generic log processing tools can be used with Apache as well.

Resolving Hostnames

Earlier in the lesson, you learned how to use the HostNameLookups directive to enable

or disable hostname resolution at the time the request is made. If HostNameLookups

is set to off (the default), the log file will contain only IP addresses. Later, you

can use the command-line logresolve utility on Unix or logresolve.exe on

Windows to process the log file and convert the IP addresses to hostnames.

The logresolve utility reads log entries from standard input and outputs the result to

its standard output. To read to and from a file, you can use redirection, on both Unix

and Windows:

logresolve < access.log > resolved.log

Log-resolving tools are efficient because they can cache results and they do not cause

any delay when serving requests to clients.

Page 10 of 16

Log Rotation

In Web sites with high traffic, access log files can quickly grow in size. You should

have a mechanism to rotate logs periodically, archiving and compressing older logs at

defined intervals.

Log files should not be removed while Apache is running, because the server is

writing directly to them. A solution would be to use an intermediate program to log

the requests. The program will, in turn, take care of rotating the logs.

Apache provides the rotatelogs program on Unix and rotatelogs.exe on

Windows for this purpose. It accepts three arguments: a filename, a rotate interval in

seconds, and an optional offset in minutes against UTC (Coordinated Universal

Time).

For example,

TransferLog "|bin/rotatelogs /var/logs/apachelog 86400"

will create a new log file and move the current log to the /var/logs directory daily.

(At the end of the command, 86400 is the number of seconds in one day.)

NOTE:

If the path to the program includes spaces, you might need to escape them by

prefixing them with a \ (backslash)for example, My\ Documents. This is especially

common in the Windows platform.

If the name of the file includes % prefixed options, the name will be treated as input to

the strftime function that converts the % options to time values. The manual page

for the rotatelogs utility contains a complete listing of options, but here's an

example:

TransferLog "|bin/rotatelogs /var/logs/apachelog%m_%d_%y 86400"

This command will add the current month, day, and year to the log filename.

If the name does not include any %-formatted options, the current time in seconds is

added to the name of the archived file.

Page 11 of 16

Merging and Splitting Logs

When you have a cluster of Web servers serving similar content, perhaps behind a

load balancer, you often need to merge the logs from all the servers in a unique log

stream before passing it to analysis tools.

Similarly, if a single Apache server instance handles several virtual hosts, sometimes

it is useful to split a single log file into different files, one per each virtual host.

Log tools is a collection of log-manipulation tools that can be found at

http://www.coker.com.au/logtools/. Additionally, Apache includes the split-file

Perl script for splitting logs. You can find it in the support subdirectory of the

Apache distribution.

Log Analysis

After you collect the logs, you can analyse them and gain information about traffic

and visitor behaviourr.

Many commercial and freely available applications are available for log analysis and

reporting. Two popular open source applications are Webalizer

(http://www.mrunix.net/webalizer/) and awstats (http://awstats.sourceforge.net/).

W usage is a nice, inexpensive commercial alternative and can be found at

http://www.boutell.com/wusage/.

Monitoring Error Logs

If you run Apache on a Unix system, you can use the tail command-line utility to

monitor, in real-time, log entries both to your access and error logs. The syntax is

tail -f logname

where logname is the path to the Apache log file. It will print onscreen the last few

lines of the log file and will continue to print entries as they are added to the file.

You can find additional programs that enable you to quickly identify problems by

scanning your error log files for specific errors, malformed requests, and so on, and

reporting on them:

 Logscan can be found at http://sourceforge.net/projects/logscan/.

 ScanErrLog can be found at http://www.librelogiciel.com/software/.

http://www.coker.com.au/logtools/
http://www.mrunix.net/webalizer/
http://awstats.sourceforge.net/
http://www.boutell.com/wusage/
http://sourceforge.net/projects/logscan/
http://www.librelogiciel.com/software/

Page 12 of 16

Logging Custom Information to a Database

Creating your own logging tables in MySQL, matched up with snippets of PHP code,

can help you to capture access-related information for specific pages of your site.

Using this information, you can create customized reports. This method can be much

less cumbersome than wading through Apache log files, especially when you are just

searching for a subset of access information. The following sections outline a simple

version of this process.

Creating the Database Table

The first step in your custom logging method is to create the database table. The

following table creation command will create a table called access_tracker in your

MySQL database, with fields for an ID, page title, user agent, and date of access:

mysql> create table access_tracker (

 -> id int not null primary key auto_increment,

 -> page_title varchar(50),

 -> user_agent text,

 -> date_accessed date

 ->);

Next, you'll create the code snippet that will write to this table.

Creating the PHP Code Snippet

As you may have gathered already, code snippet essentially means a little bit of code.

In other words, something that doesn't qualify as a long script, but just serves a simple

purpose. In this case, the code snippet in Listing 1 will write some basic information

to the access_tracker table.

Listing 1. Code Snippet for Access Tracking
 1: <?

 2: //set up static variables

 3: $page_title = "sample page A";

 4: $user_agent = getenv("HTTP_USER_AGENT");

 5:

 6: //connect to server and select database

 7: $conn = mysql_connect("localhost", "joeuser", "somepass") or

die(mysql_error());

 8: $db = mysql_select_db("testDB", $conn) or die(mysql_error());

 9:

10: //create and issue query

11: $sql = "insert into access_tracker values

12: ('', '$page_title', '$user_agent', now())";

13: mysql_query($sql,$conn);

14: ?>

What you'll do with this snippet is simple: Place it at the beginning of every page you

want to track. For each page, change the value of $page_title in the snippet to

represent the actual title of the page.

Page 13 of 16

Now create a sample script called sample1.php, containing the contents of Listing 1

and then the content in Listing 2.

Listing 2. Sample HTML Page
1: <HTML>

2: <HEAD>

3: <TITLE>Sample Page A</TITLE> 4: </HEAD>

5: <BODY>

6: <h1>Sample Page A</h1>

7: <P>Blah blah blah.</p>

8: </BODY>

9: </HTML>

Create a few copies of this file, with different filenames and values for $page_title.

Then access these different pages with your Web browser to fill up your logging

table.

Creating Sample Reports

When you have the data in your access_tracker table, you can create a simple

report screen to disseminate this information. The code in Listing 3 creates a report

that issues queries to count total results as well as the breakdown of browsers in use.

Each of these blocks will be explained after the code listing.

Listing 3. Creating an Access Report
 1: <?php

 2: //connect to server and select database

 3: $conn = mysql_connect("localhost", "joeuser", "somepass")

 4: or die(mysql_error());

 5: $db = mysql_select_db("testDB", $conn) or die(mysql_error());

 6:

 7: //issue query and select results for counts

 8: $count_sql = "select count(page_title) from access_tracker ";

 9: $count_res = mysql_query($count_sql, $conn) or

die(mysql_error());

10: $all_count = mysql_result($count_res, 0, "count(page_title)");

11:

12: //issue query and select results for user agents

13: $user_agent_sql = "select distinct user_agent, count(user_agent)

as count

14: from access_tracker group by user_agent order by count desc";

15: $user_agent_res = mysql_query($user_agent_sql, $conn)

16: or die(mysql_error());

17: //start user agent display block

18: $user_agent_block = "";

19:

20: //loop through user agent results

21: while ($row_ua = mysql_fetch_array($user_agent_res)) {

22: $user_agent = $row_ua['user_agent'];

23: $user_agent_count = $row_ua['count'];

24: $user_agent_block .= "

25: $user_agent

26:

27: accesses per browser: $user_agent_count

28: ";

Page 14 of 16

29: }

30:

31: //finish up the user agent block

32: $user_agent_block .= "";

33:

34: //issue query and select results for pages

35: $page_title_sql = "select distinct page_title, count(page_title)

as count

36: from access_tracker group by page_title order by count desc";

37: $page_title_res = mysql_query($page_title_sql, $conn)

38: or die(mysql_error());

39: //start page title display block

40: $page_title_block = "";

41:

42: //loop through results

43: while ($row_pt = mysql_fetch_array($page_title_res)) {

44: $page_title = $row_pt['page_title'];

46: $page_count = $row_pt['count'];

47: $page_title_block .= "

48: $page_title

49:

50: accesses per page: $page_count

51: ";

52: }

53:

54: //finish up the page title block

55: $page_title_block .= "";

56:

57:?>

58: <HTML>

59: <HEAD>

60: <TITLE>Access Report</TITLE>

61: </HEAD>

62: <BODY>

63: <h1>Access Report</h1>

64: <P>Total Accesses Tracked: <? echo "$all_count";

?></p>

65: <P>Web Browsers Used:

66: <?php print "$user_agent_block"; ?>

67: <P>Individual Pages:

68: <?php print "$page_title_block"; ?>

69: </BODY>

70: </HTML>

Lines 35 connect to the database so that you can issue the queries against the

access_tracker table. Lines 810 issue the query to select the count of all pages, and

lines 13 - 15 count the user agent accesses. Line 18 starts an unordered list block for

the results of the user agent query, while lines 21- 29 loop through the results and

create the list, which is closed in line 32.

Lines 35 - 37 create and issue the query to count the individual pages. Line 40 starts

an unordered list block for the results of this query, and lines 43 - 52 loop through the

results and create the list of accessed pages, which is closed in line 55.

Put these lines into a text file called accessreport.php, and place this file in your

Web server document root. When you access this report, you will see something like

Figure 1your page names, counts, and browsers will be different, but you get the idea.

Page 15 of 16

Figure 1. Custom access report for tracked pages.

This sort of tracking is a lot easier than wading through Apache access logs, but I

wouldn't recommend completely replacing your access logs with a database-driven

system. That's a bit too much database-connection overhead, even if MySQL is

particularly nice on your system. Instead, target your page tracking to something

particularly important.

Page 16 of 16

Workshop

The workshop is designed to help you anticipate possible questions, review what

you've learned, and begin learning how to put your knowledge into practice.

Quiz

1. How would you avoid logging hits from a client accessing your Web

site from a particular network?

2. How can you log images to a different file?

Answers

1. In some situations, you may want to ignore requests coming from a

particular network, such as your own, so that they do not skew the

results. You can do this either by post-processing the logs and

removing them or by using the SetEnvIf directive:

SetEnvIf Remote_Addr 10\.0\.0\. intranet

CustomLog logs/access_log "%h %l %u %t \"%r\" %>s %b"

!intranet

2. Earlier in the lesson, you learned how to avoid logging images. Instead

of ignoring images altogether, you can easily log them to a separate

file, using the same environment variable mechanism:

SetEnvIf Request_URI "(\.gif|\.jpeg)$" image

CustomLog logs/access_log common env=!image

CustomLog logs/images_log common env=image

mk:@MSITStore:E:/CVTPCS023ServerScriptingAndDatabaseAccess/Resources/Sams.Sams.Teach.Yourself.PHP.MySQL.and.Apache.All.in.One.2nd.Edition.Dec.2004.chm::/0672327252/11991535.html
mk:@MSITStore:E:/CVTPCS023ServerScriptingAndDatabaseAccess/Resources/Sams.Sams.Teach.Yourself.PHP.MySQL.and.Apache.All.in.One.2nd.Edition.Dec.2004.chm::/0672327252/11991535.html

