
Page 1 of 17

Creating a Simple Discussion Forum

Lesson 10a

In this lesson, you'll learn the design process behind a simple discussion forum. This

includes developing the database tables, user input forms, and display of the results.

When broken into pieces like this, such a task seems quite simple and it is! The

ultimate goal is to understand the concepts and relationships that go into making

something like a discussion forum, not to create the world's most full-functioned

system in fact, you'll see it's quite sparse, but it sure is relational.

In this lesson, you will learn

 How to create the tables, input forms, and display of a simple discussion

forum

Designing the Database Tables

Think of the basic components of a forum: topics and posts. A forum if properly used

by its patrons should have several topics, and each of those topics will have one or

more posts submitted by users. Knowing that, you should realize that the posts are

tied to the topics through a key field. This key forms the relationship between the two

tables.

Think about the requirements for the topics themselves. You definitely need a field

for the title, and subsequently you may want fields to hold the creation time and the

identification of the user who created the topic. Similarly, think of the requirements

for the posts: You'll want to store the text of the post, the time it was created, and the

person creating it. Most importantly, you need that key to tie the post to the topic.

The following two table creation statements create these tables, called forum_topics

and forum_posts:

mysql> create table forum_topics (

 -> topic_id int not null primary key auto_increment,

 -> topic_title varchar (150),

 -> topic_create_time datetime,

 -> topic_owner varchar (150)

 ->);

Query OK, 0 rows affected (0.03 sec)

mysql> create table forum_posts (

 -> post_id int not null primary key auto_increment,

 -> topic_id int not null,

 -> post_text text,

 -> post_create_time datetime,

 -> post_owner varchar (150)

 ->);

Query OK, 0 rows affected (0.00 sec)

Page 2 of 17

NOTE:

In this simple forum example, we will identify users by their email addresses and not

require any sort of login sequence.

You should now have two empty tables, waiting for some input. In the next section,

you'll create the input forms for adding a topic and a post.

Creating the Input Forms and Scripts

Before you can add any posts, you must add a topic to the forum. It is common

practice in forum creation to add the topic and the first post in that topic at the same

time. From a user's point of view, it doesn't make much sense to add a topic and then

go back, select the topic, and add a reply. You want the process to be as smooth as

possible.

Listing 1 shows the form for a new topic creation, which includes a space for the first

post in the topic.

Listing 1. Form for Adding a Topic
 1: <html>

 2: <head>

 3: <title>Add a Topic</title>

 4: </head>

 5: <body>

 6: <h1>Add a Topic</h1>

 7: <form method=post action="do_addtopic.php">

 8: <p>Your E-Mail Address:

 9: <input type="text" name="topic_owner" size=40 maxlength=150>

10: <p>Topic Title:

11: <input type="text" name="topic_title" size=40 maxlength=150>

12: <P>Post Text:

13: <textarea name="post_text" rows=8 cols=40

wrap=virtual></textarea>

14: <P><input type="submit" name="submit" value="Add Topic"></p>

15: </form>

16: </body>

17: </html>

Seems simple enough the three fields shown in the form, which you can see in Figure

1, are all you need to complete both tables; your script and database can fill in the

rest. Save Listing 1 as something like addtopic.html and put it in your Web server

document root so that you can follow along.

Page 3 of 17

Figure 1. The topic creation form.

To create the entry in the forum_topics table, you use the values from the

$_POST[topic_title] and $_POST[topic_owner] variables from the input form.

The topic_id and topic_create_time fields will be automatically incremented and

added via the now() MySQL function, respectively.

Similarly, in the forum_posts table, you use the values of $_POST[post_text] and

$_POST[topic_owner] from the input form, and the post_id, post_create_time,

and the topic_id fields will be automatically incremented or otherwise supplied.

Because you need a value for the topic_id field to be able to complete the entry in

the forum_posts table, you know that query must happen after the query to insert the

record in the forum_topics table.

Page 4 of 17

Listing 2 creates the script to add these records to the table.

Listing .2. Script for Adding a Topic
 1: <?php

 2: //check for required fields from the form

 3: if ((!$_POST[topic_owner]) || (!$_POST[topic_title])

 4: || (!$_POST[post_text])) {

 5: header("Location: addtopic.html");

 6: exit;

 7: }

 8:

 9: //connect to server and select database

10: $conn = mysql_connect("localhost", "joeuser", "somepass")

11: or die(mysql_error());

12: mysql_select_db("testDB",$conn) or die(mysql_error());

13:

14: //create and issue the first query

15: $add_topic = "insert into forum_topics values ('',

'$_POST[topic_title]',

16: now(), '$_POST[topic_owner]')";

17: mysql_query($add_topic,$conn) or die(mysql_error());

18:

19: //get the id of the last query

20: $topic_id = mysql_insert_id();

21:

22: //create and issue the second query

23: $add_post = "insert into forum_posts values ('', '$topic_id',

24: '$_POST[post_text]', now(), '$_POST[topic_owner]')";

25: mysql_query($add_post,$conn) or die(mysql_error());

26:

27: //create nice message for user

28: $display_block = "<P>The $topic_title topic has

been created.</p>";

29: ?>

30: <html>

31: <head>

32: <title>New Topic Added</title>

33: </head>

34: <body>

35: <h1>New Topic Added</h1>

36: <?php echo $display_block; ?>

37: </body>

38: </html>

Lines 3 - 7 check for the three required fields we need to complete both tables the

topic owner, a topic title, and some text for the post. If either one of these fields is not

present, the user is redirected to the original form.

Lines 10 - 12 form the database connection, which should be familiar to you by now.

Lines 15 - 17 create and insert the first query, which adds the topic to the

forum_topics table. Note that the first field is left blank, so the automatically

incrementing value is added by the system per the original table definition. The

MySQL now() function is used to time stamp the record with the current time, at

insertion. The other fields in the record are completed using values from the form.

Line 20 shows the use of a very handy function: mysql_insert_id(). This function

retrieves the primary key ID of the last record inserted into the database by this script.

Page 5 of 17

In this case, mysql_insert_id() gets the id value from the forum_topics table,

which will become the entry for the topic_id field in the forum_posts table.

Lines 23 - 25 create and insert the second query, again using a mixture of information

known and supplied by the system. The second query adds the text of the user's post

to the forum_posts table. Line 28 simply creates a display string for the user, and the

rest of the script rounds out the display.

Save this listing as do_addtopic.phpthe name of the action in the previous script and

place it in the document root of your Web server. Complete the form and then submit

it, and you should see the New Topic Added message. Figures 2 and 3 show the

sequence of events.

Figure 2. Adding a topic and first post.

Figure 3. Successful addition of a topic and first post.

Page 6 of 17

In the next section, you'll put together two more pieces of the puzzle: displaying the

topics and posts, and replying to a topic.

Displaying the Topic List

Now that you have a topic and at least one post in your database, you can display this

information and let people add new topics or reply to existing ones. In Listing 3, we

take a step back and create a page that will list all the topics in the forum. This page

will show the basic information of each topic and provide the user with a link to add a

new topic; you have already created the form and script for that. The code in Listing 3

represents an entry page for your forum.

Page 7 of 17

Although Listing 3 looks like a lot of code, it's actually many small, simple concepts

you've already encountered, starting with the database connection code in lines 35.

Listing 3. Topic Listing Script
 1: <?php

 2: //connect to server and select database

 3: $conn = mysql_connect("localhost", "joeuser", "somepass")

 4: or die(mysql_error());

 5: mysql_select_db("testDB",$conn) or die(mysql_error());

 6:

 7: //gather the topics

 8: $get_topics = "select topic_id, topic_title,

 9: date_format(topic_create_time, '%b %e %Y at %r') as

fmt_topic_create_time,

10: topic_owner from forum_topics order by topic_create_time desc";

11: $get_topics_res = mysql_query($get_topics,$conn) or

die(mysql_error());

12: if (mysql_num_rows($get_topics_res) < 1) {

13: //there are no topics, so say so

14: $display_block = "<P>No topics exist.</p>";

15: } else {

16: //create the display string

17: $display_block = "

18: <table cellpadding=3 cellspacing=1 border=1>

19: <tr>

20: <th>TOPIC TITLE</th>

21: <th># of POSTS</th>

22: </tr>";

23:

24: while ($topic_info = mysql_fetch_array($get_topics_res)) {

25: $topic_id = $topic_info['topic_id'];

26: $topic_title = stripslashes($topic_info['topic_title']);

27: $topic_create_time =

$topic_info['fmt_topic_create_time'];

28: $topic_owner = stripslashes($topic_info['topic_owner']);

29:

30: //get number of posts

31: $get_num_posts = "select count(post_id) from forum_posts

32: where topic_id = $topic_id";

33: $get_num_posts_res = mysql_query($get_num_posts,$conn)

34: or die(mysql_error());

35: $num_posts =

mysql_result($get_num_posts_res,0,'count(post_id)');

36:

37: //add to display

38: $display_block .= "

39: <tr>

40: <td>

41: $topic_title

42: Created on $topic_create_time by $topic_owner</td>

43: <td align=center>$num_posts</td>

44: </tr>";

45: }

46:

47: //close up the table

48: $display_block .= "</table>";

49: }

50: ?>

51: <html>

52: <head>

Page 8 of 17

53: <title>Topics in My Forum</title>

54: </head>

55: <body>

56: <h1>Topics in My Forum</h1>

57: <?php echo $display_block; ?>

58: <P>Would you like to add a topic?</p>

59: </body>

60: </html>

Lines 8 - 10 show the first of the database queries, and this particular one selects all

the topic information, in order by descending date. In other words, gather the data in

such a way that the the topic that was created most recently will appear at the top of

the list. In the query, notice the use of the date_format() function to create a much

nicer date display than the raw value stored in the database.

Line 12 checks for the presence of any records returned by the query. If no records are

returned, and therefore no topics are in the table, you'll want to tell the user. Line 14

creates this message. At this point, if no topics existed, the script would break out of

the if...else construct and be over with; the next action would occur at line 51,

which is the start of the static HTML. If the script ended here, the message created in

line 14 would be printed in line 57, and you would see something like Figure 4.

Figure 4. No topics found.

Page 9 of 17

If, however, you have topics in your forum_topics table, the script continues at line

15. At line 17, a block of text is assigned to the $display_block variable, containing

the beginnings of an HTML table. Lines 18 - 22 set up a table with two columns: one

for the title and one for the number of posts. At line 24, we begin to loop through the

results of the original query.

The while loop in line 24 says that while there are elements to be extracted from the

result set, extract each row as an array called $topic_info, and use the field names

as the array element to assign the value to a new variable. So, the first element we try

to extract is the topic_id field, on line 25. We assign the value of

$topic_info['topic_id'] to the $topic_id variable, meaning that we get a local

value for $topic_id from an array called $topic_info, containing a field called

topic_id. Continue doing this for the $topic_title, $topic_create_time, and

$topic_owner variables in lines 26 - 28. The stripslashes() function removes any

escape characters that were input into the table at the time of record insertion.

In lines 31 - 35 we issue another query, in the context of the while loop, to get the

number of posts for that particular topic. In line 38, we continue the creation of the

$display_block string, using the concatenation operator (.=) to make sure this string

is tacked on to the end of the display string we have built so far. In line 40, we create

the HTML table column to display the link to the file that will show the topic

(showtopic.php), and also print the topic owner and creation time.

The second HTML table column, on line 43, shows the number of posts. On line 45,

we break out of the while loop, and in line 48 add the last bit to the $display_block

string to close the table. The remaining lines print the HTML for the page, including

the value of the $display_block string.

If you save this file as topiclist.php and place it in your Web server document

root, and if you have topics in your database tables, you may see something like

Figure 5.

Figure 5. Topics are available.

Page 10 of 17

Displaying the Posts in a Topic

As you may have guessed, the next item on the task list is to build that

showtopic.php file, to show the topic's postings. Listing 4 does just that. In this

listing, lines 36 check for the existence of a value for topic_id in the GET query

string. Because we intend to show all the posts within a selected topic, we need to

know which topic to use in our query, and this is the manner in which the information

is given to us. If a value in $_GET[topic_id] does not exist, the user is redirected

back to the topic listing page, presumably to try again.

If the script makes it past the check for $_GET[topic_id], lines 9 - 11 make the

connection to the database, in preparation for issuing queries.

Listing 4. Script to Show Topic Posts
 1: <?php

 2: //check for required info from the query string

 3: if (!$_GET[topic_id]) {

 4: header("Location: topiclist.php");

 5: exit;

 6: }

 7:

 8: //connect to server and select database

 9: $conn = mysql_connect("localhost", "joeuser", "somepass")

10: or die(mysql_error());

11: mysql_select_db("testDB",$conn) or die(mysql_error());

12:

13: //verify the topic exists

14: $verify_topic = "select topic_title from forum_topics where

15: topic_id = $_GET[topic_id]";

16: $verify_topic_res = mysql_query($verify_topic, $conn)

17: or die(mysql_error());

18:

19: if (mysql_num_rows($verify_topic_res) < 1) {

20: //this topic does not exist

21: $display_block = "<P>You have selected an invalid topic.

2012

Page 11 of 17

22: Please try again.</p>";

23: } else {

24: //get the topic title

25: $topic_title = stripslashes(mysql_result($verify_topic_res,0,

26: 'topic_title'));

27:

28: //gather the posts

29: $get_posts = "select post_id, post_text,

date_format(post_create_time,

30: '%b %e %Y at %r') as fmt_post_create_time, post_owner from

31: forum_posts where topic_id = $_GET[topic_id]

32: order by post_create_time asc";

33:

34: $get_posts_res = mysql_query($get_posts,$conn) or

die(mysql_error());

35:

36: //create the display string

37: $display_block = "

38: <P>Showing posts for the $topic_title topic:</p>

39:

40: <table width=100% cellpadding=3 cellspacing=1 border=1>

41: <tr>

42: <th>AUTHOR</th>

43: <th>POST</th>

44: </tr>";

45:

46: while ($posts_info = mysql_fetch_array($get_posts_res)) {

47: $post_id = $posts_info['post_id'];

48: $post_text = nl2br(stripslashes($posts_info['post_text']));

49: $post_create_time = $posts_info['fmt_post_create_time'];

50: $post_owner = stripslashes($posts_info['post_owner']);

51:

52: //add to display

53: $display_block .= "

54: <tr>

55: <td width=35% valign=top>$post_owner
[$post_create_time]</td>

56: <td width=65% valign=top>$post_text

57: REPLY TO

58: POST</td>

59: </tr>";

60: }

61:

62: //close up the table

63: $display_block .= "</table>";

64: }

65: ?>

66: <html>

67: <head>

68: <title>Posts in Topic</title>

69: </head>

70: <body>

71: <h1>Posts in Topic</h1>

72: <?php echo $display_block; ?>

73: </body>

74: </html>

Lines 14 - 17 show the first of these queries, and this one is used to validate that the

topic_id sent in the query string is actually a valid entry, by selecting the associated

topic_title for the topic in question. If the validation fails the test in line 19, a

message is created in lines 21 - 22, and the script breaks out of the if...else

statement and finishes up by printing HTML.

Page 12 of 17

 This output looks like Figure 6.

Figure 6. Invalid topic selected.

If, however, the topic is valid, we extract the value of topic_title in line 25, again

using stripslashes() to remove any escape characters. Next, a query is issued in

lines 29 - 32 to gather all the posts associated with that topic, in ascending order by

time. In this case, newest posts are at the bottom of the list. At line 37, a block of text

is started, containing the beginnings of an HTML table. Lines 40 - 44 set up a table

with two columns: one for the author of the post and one for the post text itself. We

stop writing the text block momentarily and at line 46 we begin to loop through the

results of the original query.

The while loop in line 46 says that while there are elements to be extracted from the

result set, extract each row as an array called $posts_info, and use the field names

as the array element to assign the value to a new variable. So, the first element we try

to extract is the post_id field, on line 47. We assign the value of

$posts_info['post_id'] to the variable $post_id, meaning that we get a local

value for $post_id from an array called $posts_info, containing a field called

post_id. Continue doing this for the $post_text, $post_create_time, and

$post_owner variables in lines 4850. The stripslashes() function is again used to

remove any escape characters, and the nl2br() function is used on the value of

$posts_info[post_text], to replace all newline characters with XHTML-compliant

linebreak characters.

In line 53, we continue to write to the $display_block string, using the

concatenation operator (.=) to make sure this string is tacked on to the end of the

string we have created so far. In line 54, we create the HTML table column to display

the author and creation time of the post. The second HTML table row, on line 56,

Page 13 of 17

shows the text of the post as well as a link to reply to the post. On line 60, we break

out of the while loop and on line 63 add the last bit to the $display_block string to

close the table. The remaining lines print the HTML for the page, including the value

of the $display_block string.

If you save this file as showtopic.php, place it in your Web server document root,

and if you have posts in your database tables, you may see something like Figure 7.

Figure 7. Posts in a topic.

A one-post topic is boring, so let's finish up this lesson by creating the script to add a

post to a topic.

Adding Posts to a Topic

In this final step, you will create the replytopost.php script, which contains code

that looks quite similar to the script used to add a new topic. Listing 5 shows the code

for this all-in-one form and script, which begins with the database connection in lines

35. Although the script performs different tasks depending on the status of the form

(whether it's being shown or submitted), both conditions require database interaction

at some point.

Listing 5. Script to Add Replies to a Topic
 1: <?php

 2: //connect to server and select database; we'll need it soon

 3: $conn = mysql_connect("localhost", "joeuser", "somepass")

 4: or die(mysql_error());

 5: mysql_select_db("testDB",$conn) or die(mysql_error());

 6:

 7: //check to see if we're showing the form or adding the post

 8: if ($_POST[op] != "addpost") {

2012

Page 14 of 17

 9: // showing the form; check for required item in query string

10: if (!$_GET[post_id]) {

11: header("Location: topiclist.php");

12: exit;

13: }

14:

15: //still have to verify topic and post

16: $verify = "select ft.topic_id, ft.topic_title from

17: forum_posts as fp left join forum_topics as ft on

18: fp.topic_id = ft.topic_id where fp.post_id = $_GET[post_id]";

19:

20: $verify_res = mysql_query($verify, $conn) or

die(mysql_error());

21: if (mysql_num_rows($verify_res) < 1) {

22: //this post or topic does not exist

23: header("Location: topiclist.php");

24: exit;

25: } else {

26: //get the topic id and title

27: $topic_id = mysql_result($verify_res,0,'topic_id');

28: $topic_title = stripslashes(mysql_result($verify_res,

29: 0,'topic_title'));

30:

31: echo "

32: <html>

33: <head>

34: <title>Post Your Reply in $topic_title</title>

35: </head>

36: <body>

37: <h1>Post Your Reply in $topic_title</h1>

38: <form method=post action=\"$_SERVER[PHP_SELF]\">

39:

40: <p>Your E-Mail Address:

41: <input type=\"text\" name=\"post_owner\" size=40

maxlength=150>

42:

43: <P>Post Text:

44: <textarea name=\"post_text\" rows=8 cols=40

wrap=virtual></textarea>

45:

46: <input type=\"hidden\" name=\"op\" value=\"addpost\">

47: <input type=\"hidden\" name=\"topic_id\"

value=\"$topic_id\">

48: <P><input type=\"submit\" name=\"submit\" value=\"Add

Post\"></p>

49: </form>

50: </body>

51: </html>";

52: }

53: } else if ($_POST[op] == "addpost") {

54: //check for required items from form

55: if ((!$_POST[topic_id]) || (!$_POST[post_text]) ||

56: (!$_POST[post_owner])) {

57: header("Location: topiclist.php");

58: exit;

59: }

60:

61: //add the post

62: $add_post = "insert into forum_posts values ('',

'$_POST[topic_id]',

63: '$_POST[post_text]', now(), '$_POST[post_owner]')";

Page 15 of 17

64: mysql_query($add_post,$conn) or die(mysql_error());

65:

66: //redirect user to topic

67: header("Location: showtopic.php?topic_id=$topic_id");

68: exit;

69: }

70: ?>

Line 8 checks to see whether the form is being submitted. If the value of $_POST[op]

is not "addpost", the form has not yet been submitted and, therefore, it must be

shown. Before showing the form, however, you must check for that one required item;

lines 10 - 13 check for the existence of a value for post_id in the GET query string. If

a value in $_GET[post_id] does not exist, the user is redirected back to the topic

listing page.

If you made it past the check for a value in $_GET[topic_id], lines 17 - 20 issue a

complicated-looking query that gets the values of the topic_id and topic_title

fields from the forum_topics table, based on the only value that you know: the value

of $_GET[post_id]. This query both validates the existence of the post and gets

information you will need later in the script. Lines 21 - 24 act on the results of this

validity test, again redirecting the user back to the topiclist.php page if the test

fails.

If the value of $_GET[post_id] represents a valid post, you extract the value of

topic_id and topic_title in lines 27 - 29, again using stripslashes() to remove

any escape characters. Next, the entirety of the form for adding a post is printed to the

screen, and that's it for this script until the form submission button is clicked. In the

form, you see that the action is $_SERVER[PHP_SELF] on line 38, indicating that this

script will be recalled into action. Two hidden fields are present, in lines 46 and 47,

which hold the information that needs to be passed along to the next iteration of the

script.

Moving on to line 53, this block of code is executed when the script is reloaded and

the value of $_POST[op] (one of the hidden fields in the form) is "addpost". This

block checks for the presence of all required fields from the form (lines 55 - 59) and

then, if they are all present, issues the query to add the post to the database (lines 62 -

64). After the post is added to the database, the user is redirected to the

showtopic.php page (lines 67 - 68), using the appropriate query string to display the

active topic.

Page 16 of 17

If you save this file as replytopost.php and place it in your Web server document

root, try it out and you may see something like Figures 8 and 9.

Figure 8. Preparing to add a post.

Figure 9. A post was added to the list.

2012

2012

Page 17 of 17

Q&A

Q What if I want multiple forums? This sequence assumes there is only one

forum available.

A If you want to have multiple forums in your discussion board, then create a

table called forums (or something to that effect) containing fields for an ID,

name, and perhaps a forum description. Then, in the forum_topics and

forum_posts tables, add a field called forum_id so that these elements

lower in the hierarchy are tied to the master forum. Be sure to amend the

SQL queries for record insertion, to account for the value of the forum_id.

Next, instead of starting your display at the topic level, begin it at the forum

level. Just as you created a script to display topics, create a script to show

the forums. The link to the forum display would contain the forum_id, and

the page itself would show all the topics within that forum.

Workshop

The workshop is designed to help you anticipate possible questions, review what

you've learned, and begin learning how to put your knowledge into practice.

Quiz

1. How is the topic ID value passed to the showtopic.php script?

2. What else, besides telling the user the topic was successfully added, could

we do at the end of the do_addtopic.php script?

Answers

1. Through the $_GET superglobal, named as the the value of

$_GET[topic_id].

2. Just like with the replytopost.php script, we could eliminate the message

display and simply redirect the user to the topic they just created, showing

their new topic and post in all its glory.

Activity

Given by your instructor.

