
Page 1 of 12

Understanding the Database Design Process

Lesson 7a

In this lesson, you'll learn the thought processes behind designing a relational

database. After this theory-focused lesson, you'll jump headlong into learning the

basic MySQL commands in preparation for integrating MySQL in your own

applications.

Topics covered in this lesson are

 Some advantages to good database design

 Three types of table relationships

 How to normalize your database

 How to implement a good database design process

The Importance of Good Database Design

A good database design is crucial for a high performance application, just like an

aerodynamic body is important to a race car. If the car doesn't have smooth lines, it

will produce drag and go slower. Without optimized relationships, your database

won't perform as efficiently as possible. Thinking about relationships and database

efficiency is part of normalization.

Normalization refers to the process of structuring data in order to minimize

duplication and inconsistencies.

Beyond the issue of performance is the issue of maintenance your database should be

easy to maintain. This includes only storing a limited amount (if any) of repetitive

data. If you have a lot of repetitive data and one instance of that data undergoes a

change (such as a name change), that change has to be made for all occurrences of the

data. To eliminate duplication and enhance your ability to maintain the data, you

might create a table of possible values and use a key to refer to the value. That way, if

the value changes names, the change occurs only once in the master table. The

reference remains the same throughout other tables.

For example, suppose you are responsible for maintaining a database of students and

the classes in which they're enrolled. If 35 of these students are in the same class, let's

call it Advanced Math, this class name would appear 35 times in the table. Now, if the

instructor decides to change the name of the class to Mathematics IV, you must

change 35 records to reflect the new name of the class. If the database were designed

so that class names appeared in one table and just the class ID number was stored with

the student record, you would only have to change 1 record not 35 in order to update

the name change.

Page 2 of 12

The benefits of a well-planned and designed database are numerous, and it stands to

reason that the more work you do up front, the less you'll have to do later. A really

bad time for a database redesign is after the public launch of the application using it

although it does happen, and the results are costly.

So, before you even start coding an application, spend a lot of time designing your

database. Throughout the rest of this lesson, you'll learn more about relationships and

normalization, two important pieces to the design puzzle.

Page 3 of 12

Types of Table Relationships

Table relationships come in several forms:

 One-to-one relationships

 One-to-many relationships

 Many-to-many relationships

For example, suppose you have a table called employees that contains each person's Social

Security number, name, and the department in which he or she works. Suppose you also have a

separate table called departments, containing the list of all available departments, made up of a

Department ID and a name. In the employees table, the Department ID field matches an ID

found in the departments table. You can see this type of relationship in Figure 1. The PK next

to the field name indicates the primary key.

Figure 1. The employees and departments tables are related through the DeptID key.

In the following sections, you will take a closer look at each of the relationship types.

One-to-One Relationships

In a one-to-one relationship, a key appears only once in a related table. The employees and

departments tables do not have a one-to-one relationship because many employees undoubtedly

belong to the same department. A one-to-one relationship exists, for example, if each employee

is assigned one computer within a company. Figure 2 shows the one-to-one relationship of

employees to computers.

Page 4 of 12

Figure 2. One computer is assigned to each employee.

The employees and computers tables in your database would look something like Figure 3,

which represents a one-to-one relationship.

Figure 3. One-to-one relationship in the data model.

One-to-Many Relationships

In a one-to-many relationship, keys from one table appear multiple times in a related table. The

example shown in Figure 1, indicating a connection between employees and departments,

illustrates a one-to-many relationship. A real-world example would be an organizational chart of

the department, as shown in Figure 4.

Page 5 of 12

Figure 4. One department contains many employees.

The one-to-many relationship is the most common type of relationship. Another practical

example is the use of a state abbreviation in an address database; each state has a unique

identifier (CA for California, PA for Pennsylvania, and so on), and each address in the United

States has a state associated with it.

If you have eight friends in California and five in Pennsylvania, you will use only two distinct

abbreviations in your table. One abbreviation (CA) represents a one-to-eight relationship, and the

other (PA) represents a one-to-five relationship.

Many-to-Many Relationships

The many-to-many relationship often causes problems in practical examples of normalized

databases, so much so that it is common to simply break many-to-many relationships into a

series of one-to-many relationships. In a many-to-many relationship, the key value of one table

can appear many times in a related table. So far, it sounds like a one-to-many relationship, but

here's the curveball: The opposite is also true, meaning that the primary key from that second

table can also appear many times in the first table.

Think of such a relationship this way, using the example of students and classes. A student has

an ID and a name. A class has an ID and a name. A student usually takes more than one class at a

time, and a class always contains more than one student, as you can see in Figure 5.

Figure 5. Students take classes, and classes contain students.

Page 6 of 12

As you can see, this sort of relationship doesn't present an easy method for relating tables. Your

tables could look like Figure 6, seemingly unrelated.

Figure 6. The students table and the classes table, unrelated.

To make the theoretical many-to-many relationship, you would create an intermediate table, one

that sits between the two tables and essentially maps them together. You might build one similar

to the table in Figure 7.

Figure 7. The students_ classes_map table acts as an intermediary.

Page 7 of 12

If you take the information in Figure 5 and put it into the intermediate table, you would have

something like Figure 8.

Figure 8. The students_ classes_map table populated with data.

STUDENTID CLASSID

STUDENT 1 CLASS A

STUDENT 2 CLASS A

STUDENT 3 CLASS A

STUDENT 4 CLASS A

STUDENT 5 CLASS B

STUDENT 6 CLASS B

STUDENT 7 CLASS C

STUDENT 1 CLASS B

STUDENT 2 CLASS B

STUDENT 3 CLASS C

STUDENT 4 CLASS C

As you can see, many students and many classes happily coexist within the

students_classes_map table.

With this introduction to the types of relationships, learning about normalization should be a

snap.

Page 8 of 12

Understanding Normalization

Normalization is simply a set of rules that will ultimately make your life easier when you're

acting as a database administrator. It's the art of organizing your database in such a way that your

tables are related where appropriate and flexible for future growth.

The sets of rules used in normalization are called normal forms. If your database design follows

the first set of rules, it's considered in the first normal form. If the first three sets of rules of

normalization are followed, your database is said to be in the third normal form.

Throughout this lesson, you'll learn about each rule in the first, second, and third normal forms

and, we hope, will follow them as you create your own applications. You'll be using a sample set

of tables for a students and courses database and taking it to the third normal form.

Problems with the Flat Table

Before launching into the first normal form, you have to start with something that needs to be

fixed. In the case of a database, it's the flat table. A flat table is like a spreadsheetit has many,

many columns. There are no relationships between multiple tables; all the data you could

possibly want is right there in that flat table. This scenario is inefficient and consumes more

physical space on your hard drive than a normalized database.

In your students and courses database, assume that you have the following fields in your flat

table:

 StudentName The name of the student.

 CourseID1 The ID of the first course taken by the student.

 CourseDescription1 The description of the first course taken by the student.

 CourseInstructor1 The instructor of the first course taken by the student.

 CourseID2 The ID of the second course taken by the student.

 CourseDescription2 The description of the second course taken by the student.

 CourseInstructor2 The instructor of the second course taken by the student.

 Repeat CourseID, CourseDescription, and CourseInstructor columns many more

times to account for all the classes students can take during their academic career.

With what you've learned so far, you should be able to identify the first problem area:

CourseID, CourseDescription, and CourseInstructor columns are repeated groups.

Eliminating redundancy is the first step in normalization, so next you'll take this flat table to first

normal form. If your table remained in its flat format, you could have a lot of unclaimed space

and a lot of space being used unnecessarily not an efficient table design.

Page 9 of 12

First Normal Form

The rules for the first normal form are as follows:

 Eliminate repeating information.

 Create separate tables for related data.

If you think about the flat table design with many repeated sets of fields for the students and

courses database, you can identify two distinct topics: students and courses. Taking your students

and courses database to the first normal form would mean that you create two tables: one for

students and one for courses, as shown in Figure 9.

Figure 9. Breaking the flat table into two tables.

Your two tables now represent a one-to-many relationship of one student to many courses.

Students can take as many courses as they want and are not limited to the number of

CourseID/CourseDescription/CourseInstructor groupings that existed in the flat table.

The next step is to put the tables into second normal form.

Second Normal Form

The rule for the second normal form is

 No non-key attributes depend on a portion of the primary key.

In plain English, this means that if fields in your table are not entirely related to a primary key,

you have more work to do. In the students and courses example, you need to break out the

courses into their own table and modify the students_courses table.

CourseID, CourseDescription, and CourseInstructor can become a table called courses

with a primary key of CourseID. The students_courses table should then just contain two

fields: StudentID and CourseID. You can see this new design in Figure 10.

Page 10 of 12

Figure 10. Taking your tables to second normal form.

This structure should look familiar to you as a many-to-many relationship using an intermediary

mapping table. The third normal form is the last form we'll look at, and you'll find it's just as

simple to understand as the first two.

Third Normal Form

The rule for the third normal form is

 No attributes depend on other non-key attributes.

This rule simply means that you need to look at your tables and see whether you have more

fields that can be broken down further and that aren't dependent on a key. Think about removing

repeated data and you'll find your answerinstructors. Inevitably, an instructor will teach more

than one class. However, CourseInstructor is not a key of any sort. So, if you break out this

information and create a separate table purely for the sake of efficiency and maintenance (as

shown in Figure 11), that's the third normal form.

Figure 11. Taking your tables to third normal form.

Third normal form is usually adequate for removing redundancy and allowing for flexibility and

growth. The next section will give you some pointers for the thought process involved in

database design and where it fits in the overall design process of your application.

Page 11 of 12

Following the Design Process

The greatest problem in application design is a lack of forethought. As it applies to

database-driven applications, the design process must include a thorough evaluation

of your database what it should hold, how data relates to each other, and most

importantly, whether it is scalable.

The general steps in the design process are

 Define the objective

 Design the data structures (tables, fields)

 Discern relationships

 Define and implement business rules

 Create the application

Creating the application is the last step not the first! Many developers take an idea for

an application, build it, and then go back and try to make a set of database tables fit

into it. This approach is completely backward, inefficient, and will cost a lot of time

and money.

Before you start any application design process, sit down and talk it out. If you can't

describe your application including the objectives, audience, and target market then

you're not ready to build it, let alone model the database.

After you can describe the actions and nuances of your application to other people and

have it make sense to them, you can start thinking about the tables you want to create.

Start with big flat tables because after you write them down, your newfound

normalization skills will take over. You will be able to find your redundancies and

visualize your relationships.

The next step is to do the normalization. Go from flat table to first normal form and so

on up to the third normal form if possible. Use paper, pencils, sticky notes, or

whatever helps you to visualize the tables and relationships. There's no shame in data

modelling on sticky notes until you're ready to create the tables themselves. Plus,

using them is a lot cheaper than buying software to do it for you; modelling software

ranges from one hundred to several thousands of dollars!

After you have a preliminary data model, look at it from the application's point of

view. Or look at it from the point of view of the person using the application you're

building. This is the point where you define business rules and see whether your data

model will break. An example of a business rule for an online registration application

is, "Each user must have one email address, and it must not belong to any other user."

If EmailAddress wasn't a unique field in your data model, your model would be

broken based on the business rule.

After your business rules have been applied to your data model, only then can

application programming begin. You can rest assured that your data model is solid

and you will not be programming yourself into a brick wall. The latter event is all too

common.

Page 12 of 12

Q&A

Q Are there only three normal forms?

A No, there are more than three normal forms. Additional forms are the Boyce-

Codd normal form, fourth normal form, and fifth normal form/Join-Projection

normal form. These forms are not often followed because the benefits of

doing so are outweighed by the cost in man-hours and database efficiency.

Workshop

The workshop is designed to help you anticipate possible questions, review what

you've learned, and begin learning how to put your knowledge into practice.

Quiz

1. Name three types of data relationships.

2. Because many-to-many relationships are difficult to represent in an

efficient database design, what should you do?

Answers

1. One-to-one, one-to-many, many-to-many.

2. Create a series of one-to-many relationships using intermediary mapping

tables.

Activity

Explain each of the three normal forms to a person who works with spreadsheets and

flat tables.

mk:@MSITStore:E:/CVTPCS023ServerScriptingAndDatabaseAccess/Resources/Sams.Sams.Teach.Yourself.PHP.MySQL.and.Apache.All.in.One.2nd.Edition.Dec.2004.chm::/0672327252/11991535.html
mk:@MSITStore:E:/CVTPCS023ServerScriptingAndDatabaseAccess/Resources/Sams.Sams.Teach.Yourself.PHP.MySQL.and.Apache.All.in.One.2nd.Edition.Dec.2004.chm::/0672327252/11991535.html

