
Page 1 of 24

Creating an Online Address Book

Lesson 9b

In this hands-on lesson, your project will be to create a manageable, online address

book. You will learn the methods for creating the relevant database tables, as well as

the forms and scripts for adding, deleting, and viewing database records.

In this lesson, you will learn how to

 Create relational tables for an online address book

 Create the forms and scripts for adding and deleting records in the address

book

Create the forms and scripts for viewing records Planning and
Creating the Database Tables

When you think of an address book, the obvious fields come to mind: name, address,

telephone number, email address. However, if you look at your own paper based

address book, you may note that you have several entries for one person. Maybe that

person has three telephone numbers, or two email addresses, and so forth. In your

online address book, a set of related tables will help alleviate the redundancy and

repetition of information.

Table 1 shows sample table and field names to use for your online address book. In a

minute, you'll use actual SQL statements to create the tables, but first you should look

at this information and try to see the relationships appear. Ask yourself which of the

fields should be primary or unique keys.

Table 1. Address Book Table and Field Names

Table Name Field Names

master_name id, date_added, date_modified, f_name, l_name

address id, master_id, date_added, date_modified, address, city,

state, zipcode, type

telephone id, master_id, date_added, date_modified, tel_number,
type

fax id, master_id, date_added, date_modified, fax_number,
type

email id, master_id, date_added, date_modified, email, type

personal_notes id, master_id, date_added, date_modified, note

Notice the use of date-related fields; each table has a date_added and

date_modified field in it. The fields will help maintain your data; you may at some

Page 2 of 24

point want to issue a query that removes all records that are older than a certain

number of months or years, or that removes all records that haven't been updated

within a certain period of time.

As you can see in the following SQL statements, the master_name table has two

fields besides the ID and date-related fields: f_name and l_name, for first name and

last name. The id field is the primary key. No other keys need to be primary or

unique, unless you really want to limit your address book to one John Smith, one

Mary Jones, and so forth.

NOTE:

The field lengths for the text fields in the following statements are arbitrary; you can

make them as long or as short as you want, within the allowable definition of the field

type.

The following SQL statement creates the master_name table:

mysql> create table master_name (

 -> id int not null primary key auto_increment,

 -> date_added datetime,

 -> date_modified datetime,

 -> f_name varchar (75),

 -> l_name varchar (75)

 ->);

Query OK, 0 rows affected (0.01 sec)

Next, you'll create the supplementary tables, which will all relate back to the

master_name table. For instance, the address table has the basic primary key id field

and the date_added and date_modified fields, plus the field through which the

relationship will be madethe master_id field.

The master_id will be equal to the id field in the master_name table, matching the

person whose address this is. The master_id field is not a unique key because it is a

perfectly valid assumption that one person may have several address entries. We see

this in the type field, which is defined as an enumerated list containing three options:

home, work, or other. A person may have one or more of all three types, so no other

keys are present in this table besides the primary key id. Assuming this particular

address book contains only United States addresses, we round out the table with

address, city, state, and zipcode fields.

mysql> create table address (

 -> id int not null primary key auto_increment,

 -> master_id int not null,

 -> date_added datetime,

 -> date_modified datetime,

 -> address varchar (255),

 -> city varchar (30),

 -> state char (2),

 -> zipcode varchar (10),

 -> type enum ('home', 'work', 'other')

 ->);

Query OK, 0 rows affected (0.01 sec)

Page 3 of 24

The telephone, fax, and email tables are all variations on the same theme:

mysql> create table telephone (

 -> id int not null primary key auto_increment,

 -> master_id int not null,

 -> date_added datetime,

 -> date_modified datetime,

 -> tel_number varchar (25),

 -> type enum ('home', 'work', 'other')

 ->);

Query OK, 0 rows affected (0.01 sec)

mysql> create table fax (

 -> id int not null primary key auto_increment,

 -> master_id int not null,

 -> date_added datetime,

 -> date_modified datetime,

 -> fax_number varchar (25),

 -> type enum ('home', 'work', 'other')

 ->);

Query OK, 0 rows affected (0.00 sec)

mysql> create table email (

 -> id int not null primary key auto_increment,

 -> master_id int not null,

 -> date_added datetime,

 -> date_modified datetime,

 -> email varchar (150),

 -> type enum ('home', 'work', 'other')

 ->);

Query OK, 0 rows affected (0.00 sec)

The personal_notes table also follows the same sort of pattern, except that

master_id a unique key and allows only one notes record per person:

mysql> create table personal_notes (

 -> id int not null primary key auto_increment,

 -> master_id int not null unique,

 -> date_added datetime,

 -> date_modified datetime,

 -> note text

 ->);

Query OK, 0 rows affected (0.00 sec)

Now that your tables are created, you can work through the forms and scripts for

managing and viewing your records.

Page 4 of 24

Creating a Menu

Your online address book will contain several actions, so it makes sense to create a

menu for your links. Listing 1 creates a simple menu for all the scripts you will create

in this lesson, called mymenu.html.

Listing 1. Address Book Menu
 1: <html>

 2: <head>

 3: <title>My Address Book</title>

 4: </head>

 5: <body>

 6: <h1>My Address Book</h1>

 7:

 8: <P>Management

 9:

10: Add an Entry

11: Delete an Entry

12:

13:

14: <P>Viewing

15:

16: Select a Record

17:

18: </body>

19: </html>

Figure 1 shows the output of Listing 1. You'll tackle each of these items in order,

starting with "Add an Entry" in the next section.

Figure 1. Address book menu.

Page 5 of 24

Creating the Record Addition Mechanism

Just because you'll potentially be adding information to six different tables doesn't

mean your form or script will be monstrous. In fact, your scripts won't look much

different from any of the ones you created in previous lessons, and with practice, you

will be able to make these verbose scripts much more streamlined and efficient.

In Listing 2, you can see a basic record addition script, called addentry.php, that has

two parts: what to do if the form should be displayed (lines 2 through 46) and what

actions to take if the form is being submitted (lines 48 through 108). Lines 2 through

46 simply place the contents of the HTML form into a string called $display_block.

Listing 2. Basic Record Addition Script Called addentry.php
 1: <?php

 2: if ($_POST[op] != "add") {

 3: //haven't seen the form, so show it

 4: $display_block = "<h1>Add an Entry</h1>

 5: <form method=\"post\" action=\"$_SERVER[PHP_SELF]\">

 6: <P>First/Last Names:

 7: <input type=\"text\" name=\"f_name\" size=30 maxlength=75>

 8: <input type=\"text\" name=\"l_name\" size=30 maxlength=75>

 9:

 10: <P>Address:

 11: <input type=\"text\" name=\"address\" size=30>

 12:

 13: <P>City/State/Zip:

 14: <input type=\"text\" name=\"city\" size=30 maxlength=50>

 15: <input type=\"text\" name=\"state\" size=5 maxlength=2>

 16: <input type=\"text\" name=\"zipcode\" size=10 maxlength=10>

 17:

 18: <P>Address Type:

 19: <input type=\"radio\" name=\"add_type\" value=\"home\"

checked> home

 20: <input type=\"radio\" name=\"add_type\" value=\"work\"> work

 21: <input type=\"radio\" name=\"add_type\" value=\"other\">

other

 22:

 23: <P>Telephone Number:

 24: <input type=\"text\" name=\"tel_number\" size=30

maxlength=25>

 25: <input type=\"radio\" name=\"tel_type\" value=\"home\"

checked> home

 26: <input type=\"radio\" name=\"tel_type\" value=\"work\"> work

 27: <input type=\"radio\" name=\"tel_type\" value=\"other\">

other

 28:

 29: <P>Fax Number:

 30: <input type=\"text\" name=\"fax_number\" size=30

maxlength=25>

 31: <input type=\"radio\" name=\"fax_type\" value=\"home\"

checked> home

 32: <input type=\"radio\" name=\"fax_type\" value=\"work\"> work

 33: <input type=\"radio\" name=\"fax_type\" value=\"other\">

other

 34:

 35: <P>Email Address:

 36: <input type=\"text\" name=\"email\" size=30 maxlength=150>

Page 6 of 24

 37: <input type=\"radio\" name=\"email_type\" value=\"home\"

checked> home

 38: <input type=\"radio\" name=\"email_type\" value=\"work\">

work

 39: <input type=\"radio\" name=\"email_type\" value=\"other\">

other

 40:

 41: <P>Personal Note:

 42: <textarea name=\"note\" cols=35 rows=5

wrap=virtual></textarea>

 43: <input type=\"hidden\" name=\"op\" value=\"add\">

 44:

 45: <p><input type=\"submit\" name=\"submit\" value=\"Add

Entry\"></p>

 46: </FORM>";

 47:

 48: } else if ($_POST[op] == "add") {

 49: //time to add to tables, so check for required fields

 50: if (($_POST[f_name] == "") || ($_POST[l_name] == "")) {

 51: header("Location: addentry.php");

 52: exit;

 53: }

 54:

 55: //connect to database

 56: $conn = mysql_connect("localhost", "joeuser", "somepass")

 57: or die(mysql_error());

 58: mysql_select_db("testDB",$conn) or die(mysql_error());

 59:

 60: //add to master_name table

 61: $add_master = "insert into master_name values ('', now(),

now(),

 62: '$_POST[f_name]', '$_POST[l_name]')";

 63: mysql_query($add_master) or die(mysql_error());

 64:

 65: //get master_id for use with other tables

 66: $master_id = mysql_insert_id();

 67:

 68: if (($_POST[address]) || ($_POST[city]) || ($_POST[state]) ||

 69: ($_POST[zipcode])) {

 70: //something relevant, so add to address table

 71: $add_address = "insert into address values ('',

$master_id,

 72: now(), now(), '$_POST[address]', '$_POST[city]',

 73: '$_POST[state]', '$_POST[zipcode]',

'$_POST[add_type]')";

 74: mysql_query($add_address) or die(mysql_error());

 75: }

 76:

 77: if ($_POST[tel_number]) {

 78: //something relevant, so add to telephone table

 79: $add_tel = "insert into telephone values ('', $master_id,

 80: now(), now(), '$_POST[tel_number]',

'$_POST[tel_type]')";

 81: mysql_query($add_tel) or die(mysql_error());

 82: }

 83:

 84: if ($_POST[fax_number]) {

 85: //something relevant, so add to fax table

 86: $add_fax = "insert into fax values ('', $master_id,

now(),

 87: now(), '$_POST[fax_number]', '$_POST[fax_type]')";

Page 7 of 24

 88: mysql_query($add_fax) or die(mysql_error());

 89: }

 90:

 91: if ($_POST[email]) {

 92: //something relevant, so add to email table

 93: $add_email = "insert into email values ('', $master_id,

 94: now(), now(), '$_POST[email]',

'$_POST[email_type]')";

 95: mysql_query($add_email) or die(mysql_error());

 96: }

 97:

 98: if ($_POST[note]) {

 99: //something relevant, so add to notes table

100: $add_note = "insert into personal_notes values ('',

$master_id,

101: now(), now(), '$_POST[note]')";

102: mysql_query($add_note) or die(mysql_error());

103: }

104:

105: $display_block = "<h1>Entry Added</h1>

106: <P>Your entry has been added. Would you like to

107: add another?</p>";

108: }

109: ?>

110: <HTML>

111: <HEAD>

112: <TITLE>Add an Entry</TITLE>

113: </HEAD>

114: <BODY>

115: <?php echo $display_block; ?>

116: </BODY>

117: </HTML>

As we've already noted, this script will perform one of two tasks at any given time: It

will either show the record addition form, or it will perform the SQL queries related to

adding a new record. The logic that determines the task begins at line 2, with a test for

the value of $_POST[op]. If the value of $_POST[op] is not "add", the user is not

coming from the form and therefore needs to see the form. The HTML for the form is

placed in a string called $display_block, from lines 4 - 55. The script then breaks

out of the if...else construct and jumps down to line 110, which outputs the HTML

and prints the value of $display_block, in this case the form. This outcome is shown

in Figure 2.

Page 8 of 24

Figure 2. The record addition form.

The else condition on Line 48 is invoked if the value of $_POST[op] is "add",

meaning the user has submitted the form. In this simple example, two fields have been

designated as required fields: the first name and last name of the person. So, lines 50 -

53 check for values in $_POST[f_name] and $_POST[l_name] and redirect the user

back to the form if either value is missing.

After making it through the check for required fields, we connect to the database in

lines 56 - 59. Next comes the multitude of insertion statements, only one of which is

requiredthe insertion of a record into the master_name table. This occurs on lines 61 -

63. After the insertion is made, the id of this record is extracted using

mysql_insert_id() on line 66. We use this value, now referred to as $master_id, in

our remaining SQL queries.

The SQL queries for inserting records into the remaining tables are all conditional,

meaning they will occur only if some condition is true. In lines 68 - 69, we see that

the condition that must be met is that a value exists for any of the following variables:

$_POST[address], $_POST[city], $_POST[state], $_POST[zipcode]. Lines 70 -

74 create and issue the query if this condition is met.

Page 9 of 24

The same principle holds true for adding to the telephone table (lines 77 - 82), the

fax table (lines 84 - 89), the email table (lines 91 - 96), and the personal_notes

table (lines 98 - 103). If the conditions are met, records are inserted into those tables.

Once through this set of conditions, the message for the user is placed in the

$display_block variable, and the script exits this if...else construct and prints

HTML from lines 110- 117.

An output of the record addition script is shown in Figure 3.

Figure 3. A record has been added.

Add a few records using this form so that you have some values to play with in the

following sections. On your own, try to modify this script in such a way that the

values entered in the form are printed to the screen after successful record insertion.

Viewing Records

If you verified your work in the preceding section by issuing queries through the

MySQL monitor or other interface, you probably became tired of typing SELECT *

FROM... for every table. In this section, you'll create the two-part script that shows

you how to select and view records in your database.

Listing 3 shows the select-and-view script called selentry.php, that has two parts:

the record selection form (lines 7 through 41) and the code to display the record

contents (lines 43 through 155). Because this code is longer than the other code

you've seen so far, we'll break it up into smaller chunks for discussion.

Page 10 of 24

Listing 3. Script Called selentry.php for Selecting and Viewing a Record
 1: <?php

 2: //connect to database

 3: $conn = mysql_connect("localhost", "joeuser", "somepass")

 4: or die(mysql_error());

 5: mysql_select_db("testDB",$conn) or die(mysql_error());

 6:

 7: if ($_POST[op] != "view") {

 8: //haven't seen the selection form, so show it

 9: $display_block = "<h1>Select an Entry</h1>";

10:

11: //get parts of records

12: $get_list = "select id, concat_ws(', ', l_name, f_name) as

display_name

13: from master_name order by l_name, f_name";

14: $get_list_res = mysql_query($get_list) or die(mysql_error());

15:

16: if (mysql_num_rows($get_list_res) < 1) {

17: //no records

18: $display_block .= "<p>Sorry, no records to

select!</p>";

19:

20: } else {

21: //has records, so get results and print in a form

22: $display_block .= "

23: <form method=\"post\" action=\"$_SERVER[PHP_SELF]\">

24: <P>Select a Record to View:

25: <select name=\"sel_id\">

26: <option value=\"\">-- Select One --</option>";

27:

28: while ($recs = mysql_fetch_array($get_list_res)) {

29: $id = $recs['id'];

30: $display_name = stripslashes($recs['display_name']);

31:

32: $display_block .= "<option value=\"$id\">

33: $display_name</option>";

34: }

35: $display_block .= "

36: </select>

37: <input type=\"hidden\" name=\"op\" value=\"view\">

38: <p><input type=\"submit\" name=\"submit\"

39: value=\"View Selected Entry\"></p>

40: </FORM>";

41: }

42:

As with the addentry.php script, the selentry.php script will perform one of two

tasks at any given time: It either shows the selection form, or it performs all the SQL

queries related to viewing the record. No matter which of the two tasks will be

performed, the database still comes into play. Given that, we connect to it in lines 35.

The logic that determines the task begins at line 7, with a test for the value of

$_POST[op]. If the value of $_POST[op] is not "view", the user is not coming from

the selection form and therefore needs to see it. A string called $display_block is

started in line 9, and this string will ultimately hold the HTML that makes up the

record selection form.

Page 11 of 24

In lines 12 - 14, we select specific fields from the records in the master_name table,

to build the selection drop-down options in the form. For this step, you need only the

name and ID of the person whose record you want to select. Line 16 tests for results

of the query; if the query has no results, you can't build a form. If this were the case,

the value of $display_block would be filled with an error message and the script

would end, printing the resulting HTML to the screen.

However, let's assume you have a few records in the master_name table. In this case,

you have to extract the information from the query results to be able to build the form.

This is done in lines 28 - 33, with form elements written to the $display_block

string both above and below it.

We've stopped this listing at line 42, but you'll soon see lines 43 through the end of

the script. If we were to close up the if statement and the PHP block, and print the

value of $display_block to the screen at this point, you would a form something like

that in Figure 4 (with different entries).

Figure 4. The record selection form.

Page 12 of 24

However, we must finish the selentry.php script, so we continue Listing 3 at line

43, which begins the else portion of the if...else statement:

Listing 3.
43:} else if ($_POST[op] == "view") {

44:

45: //check for required fields

46: if ($_POST[sel_id] == "") {

47: header("Location: selentry.php");

48: exit;

49: }

50:

51: //get master_info

52: $get_master = "select concat_ws(' ', f_name, l_name) as

display_name

53: from master_name where id = $_POST[sel_id]";

54: $get_master_res = mysql_query($get_master);

55: $display_name = stripslashes(mysql_result($get_master_res,

56: 0,'display_name'));

57: $display_block = "<h1>Showing Record for $display_name</h1>";

58: //get all addresses

59: $get_addresses = "select address, city, state, zipcode, type

60: from address where master_id = $_POST[sel_id]";

61: $get_addresses_res = mysql_query($get_addresses);

62:

63: if (mysql_num_rows($get_addresses_res) > 0) {

64:

65: $display_block .= "<P>Addresses:

66: ";

67:

68: while ($add_info = mysql_fetch_array($get_addresses_res)) {

69: $address = $add_info[address];

70: $city = $add_info[city];

71: $state = $add_info[state];

72: $zipcode = $add_info[zipcode];

73: $address_type = $add_info[type];

74:

75: $display_block .= "$address $city $state $zipcode

76: ($address_type)";

77: }

78:

79: $display_block .= "";

80: }

81:

Line 43 contains the else portion of the if...else statement, and is invoked if the

value of $_POST[op] is "view", meaning the user has submitted the form and wants

to see a specific record. We first check for a required field, in line 46, in this case the

value of $_POST[sel_id]. This value matches the ID from the master_name table to

that of the selection made in the record selection form. If that value does not exist, the

user is redirected back to the selection form you can't very well gather information

from a set of tables when the primary key isn't present!

Assuming a value was present for $_POST[sel_id], we issue a query in lines 52 - 55

that obtains the name of the user whose record you want to view. This information is

Page 13 of 24

placed in the now-familiar $display_block string, which will continue to be built as

the script continues.

Lines 59 - 80 represent the query against the address table, and the resulting display

that is built. If the selected individual has no records in the address table, nothing is

added to the $display_block string. However, if there are one or more entries, the

addresses for this person are added to the $display_block string as one or more

unordered list elements, as shown in lines 65 - 79.

Lines 82 through 152 of Listing 3 performs the same type of looping and writing to

the $display_block variable, but the tables are different. For instance, lines 82

through 100 look for information in the telephone table and create an appropriate

string to be added to $display_block, if any information is present. The same

structure is repeated in lines 102 through 120 for information from the fax table, lines

122 through 140 for information from the email table, and lines 142 through 152 for

any content present in the personal_notes table.

Listing 3.
 82: //get all tel

 83: $get_tel = "select tel_number, type from telephone where

 84: master_id = $_POST[sel_id]";

 85: $get_tel_res = mysql_query($get_tel);

 86:

 87: if (mysql_num_rows($get_tel_res) > 0) {

 88:

 89: $display_block .= "<P>Telephone:

 90: ";

 91:

 92: while ($tel_info = mysql_fetch_array($get_tel_res)) {

 93: $tel_number = $tel_info[tel_number];

 94: $tel_type = $tel_info[type];

 95:

 96: $display_block .= "$tel_number ($tel_type)";

 97: }

 98:

 99: $display_block .= "";

100: }

101:

102: //get all fax

103: $get_fax = "select fax_number, type from fax where

104: master_id = $_POST[sel_id]";

105: $get_fax_res = mysql_query($get_fax);

106:

107: if (mysql_num_rows($get_fax_res) > 0) {

108:

109: $display_block .= "<P>Fax:

110: ";

111:

112: while ($fax_info = mysql_fetch_array($get_fax_res)) {

113: $fax_number = $fax_info[fax_number];

114: $fax_type = $fax_info[type];

115:

116: $display_block .= "$fax_number ($fax_type)";

117: }

118:

119: $display_block .= "";

Page 14 of 24

120: }

121:

122: //get all email

123: $get_email = "select email, type from email where

124: master_id = $_POST[sel_id]";

125: $get_email_res = mysql_query($get_email);

126:

127: if (mysql_num_rows($get_email_res) > 0) {

128:

129: $display_block .= "<P>Email:

130: ";

131:

132: while ($email_info = mysql_fetch_array($get_email_res)) {

133: $email = $email_info[email];

134: $email_type = $email_info[type];

135:

136: $display_block .= "$email ($email_type)";

137: }

138:

139: $display_block .= "";

140: }

141:

142: //get personal note

143: $get_notes = "select note from personal_notes where

144: master_id = $_POST[sel_id]";

145: $get_notes_res = mysql_query($get_notes);

146:

147: if (mysql_num_rows($get_notes_res) == 1) {

148: $note =

nl2br(stripslashes(mysql_result($get_notes_res,0,'note')));

149:

150: $display_block .= "<P>Personal

Notes:
$note";

151: }

152:

We still have to do a little housekeeping and finish up the script, as shown in the last

portion of Listing 3:

Listing 3.
153: $display_block .= "

<P align=center>

154: select another</p>";

155: }

156: ?>

157: <HTML>

158: <HEAD>

159: <TITLE>My Records</TITLE>

160: </HEAD>

161: <BODY>

162: <?php echo $display_block; ?>

163: </BODY>

164: </HTML>

In lines 153 - 154, we simply print a link back to the selection form before closing up

the if...else statement in line 155 and the PHP block in the line following. Lines

Page 15 of 24

157 through the end of the script are the generic HTML template that we use to

surround the contents of the $display_block string.

After selecting a record from the form shown in Figure 4, you will see a result like

that shown in Figure 5your data will vary, of course.

Figure 5. An individual's record.

When you try this script for yourself, against your own records, you should see

information only for those individuals who have additional data associated with them.

For example, if you have an entry for a friend, and all you have is an email address

entered in the email table, you shouldn't see any text relating to address, telephone,

fax, or personal notes no associated records were entered in those tables.

Creating the Record Deletion Mechanism

The record deletion mechanism is virtually identical to the script used to view a

record. In fact, you can just take the first 44 lines of Listing 3 and paste them into a

new file, called delentry.php, and make the following changes:

 In lines 7, 37, and 43, change "view" to "delete"

Page 16 of 24

 In lines 24 and 39, change "View" to "Delete"

Starting with a new line 45, the remainder of the code for delentry.php is shown in

Listing 4.

Listing 4. Script Called delentry.php for Selecting and Deleting a Record

45: //check for required fields

46: if ($_POST[sel_id] == "") {

47: header("Location: delentry.php");

48: exit;

49: }

50:

51: //issue queries

52: $del_master = "delete from master_name where id =

$_POST[sel_id]";

53: mysql_query($del_master);

54:

55: $del_address = "delete from address where id = $_POST[sel_id]";

56: mysql_query($del_address);

57:

58: $del_tel = "delete from telephone where id = $_POST[sel_id]";

59: mysql_query($del_tel);

60:

61: $del_fax = "delete from fax where id = $_POST[sel_id]";

62: mysql_query($del_fax);

63:

64: $del_email = "delete from email where id = $_POST[sel_id]";

65: mysql_query($del_email);

66:

67: $del_note = "delete from personal_notes where id =

$_POST[sel_id]";

68: mysql_query($del_master);

69:

70: $display_block = "<h1>Record(s) Deleted</h1>

71: <P>Would you like to

72: delete another?</p>";

73: }

74: ?>

75: <HTML>

76: <HEAD>

77: <TITLE>My Records</TITLE>

78: </HEAD>

79: <BODY>

80: <?php echo $display_block; ?>

81: </BODY>

82: </HTML>

Picking up with line 45, the script looks for the required field, $_POST[sel_id], just

as it did in the selentry.php script. If that required value does not exist, the user is

redirected to the selection form. In lines 52 - 68, queries delete all information related

to the selected individual, from all tables. Lines 70 - 72 place a nice message in

$display_block, and the script exits and prints the HTML to the screen. An output

of the record deletion script is shown in Figure 6.

Page 17 of 24

Figure 6. Deleting a record.

When you go back to the record selection form after deleting a record, you'll note that

the individual you deleted is no longer in the selection menuas it should be!

Adding Subentries to a Record

At this point in the lesson, you've learned how to add, remove, and view records.

What's missing is adding additional entries to the related tables once you've already

entered a master record entries for home versus work telephone number, for example.

All you need to do is make a few changes to existing scripts.

In the selentry.php script in Listing 3, change lines 153 - 154 to read

$display_block .= "<P align=center>

add info ...

select another</p>";

This change simply adds a link to the addentry.php script and also passes it a

variable accessible via $_GET[master_id].

Now we need to modify the addentry.php script from Listing 2 to account for its

dual purposes. Here is a summary of the changes to the original script.

Replace the first 10 lines of the original addentry.php script with the following

snippet:

<?php

if (($_POST[op] != "add") || ($_GET[master_id] != "")) {

Page 18 of 24

 //haven't seen the form, so show it

 $display_block = "

 <h1>Add an Entry</h1>

 <form method=\"post\" action=\"$_SERVER[PHP_SELF]\">";

 if ($_GET[master_id] != "") {

 //connect to database

 $conn = mysql_connect("localhost", "joeuser", "somepass")

 or die(mysql_error());

 mysql_select_db("testDB",$conn) or die(mysql_error());

 //get first, last names for display/tests validity

 $get_names = "select concat_ws(' ', f_name, l_name) as

 display_name from master_name where id =

$_GET[master_id]";

 $get_names_res = mysql_query($get_names) or

die(mysql_error());

 if (mysql_num_rows($get_names_res) == 1) {

 $display_name =

mysql_result($get_names_res,0,'display_name');

 }

 }

 if ($display_name != "") {

 $display_block .= "<P>Adding information for

 $display_name:</p>";

 } else {

 $display_block .= " <P>First/Last Names:

 <input type=\"text\" name=\"f_name\" size=30 maxlength=75>

 <input type=\"text\" name=\"l_name\" size=30 maxlength=75>";

 }

 $display_block .= "<P>Address:

This snippet simply moves around the form elements, printing the first and last name

fields only if they contain a new record. If they contain an addition to a record, the

individual's name is extracted from the database for aesthetic purposes as well as for a

validity check of the ID.

Next, find this line in the original addentry.php script:

<input type=\"hidden\" name=\"op\" value=\"add\">

Beneath it, add the following:

<input type=\"hidden\" name=\"master_id\" value=\"$_GET[master_id]\">

This modification ensures the known value of master_id is passed along to the next

task.

Identify what were lines 49 - 67 of the original script, beginning with the comment

time to add to tables and ending with obtaining the value of $master_id. These

lines should be replaced with the following:

Page 19 of 24

//time to add to tables, so check for required fields

if ((($_POST[f_name] == "") || ($_POST[l_name] == "")) &&

 ($_POST[master_id] == "")) {

 header("Location: addentry.php");

 exit;

}

//connect to database

$conn = mysql_connect("localhost", "joeuser", "somepass")

 or die(mysql_error());

mysql_select_db("testDB",$conn) or die(mysql_error());

if ($_POST[master_id] == "") {

 //add to master_name table

 $add_master = "insert into master_name values ('', now(),

 now(), '$_POST[f_name]', '$_POST[l_name]')";

 mysql_query($add_master) or die(mysql_error());

 //get master_id for use with other tables

 $master_id = mysql_insert_id();

} else {

 $master_id = $_POST[master_id];

}

These lines modify the check for required fields, allowing the script to continue

without values for first and last names, but only if it has a $_POST[master_id] value.

Then the script connects to the database to perform all the additions we want it to, but

it skips the addition to the master_name table if a value for $_POST[master_id]

exists.

Finally, in the section of the script that handles the insertion into the personal_notes

table, change INSERT into to REPLACE into to handle an update of the notes field.

The new script should look like Listing 5.

Listing 5. New addentry.php Script
 1: <?php

 2: if (($_POST[op] != "add") || ($_GET[master_id] != "")) {

 3: //haven't seen the form, so show it

 4: $display_block = "

 5: <h1>Add an Entry</h1>

 6: <form method=\"post\" action=\"$_SERVER[PHP_SELF]\">";

 7:

 8: if ($_GET[master_id] != "") {

 9: //connect to database

 10: $conn = mysql_connect("localhost", "joeuser", "somepass")

 11: or die(mysql_error());

 12: mysql_select_db("testDB",$conn) or die(mysql_error());

 13:

 14: //get first, last names for display/tests validity

 15: $get_names = "select concat_ws(' ', f_name, l_name) as

 16: display_name from master_name where id =

$_GET[master_id]";

 17: $get_names_res = mysql_query($get_names) or

die(mysql_error());

 18:

 19: if (mysql_num_rows($get_names_res) == 1) {

Page 20 of 24

 20: $display_name =

mysql_result($get_names_res,0,'display_name');

 21: }

 22: }

 23:

 24: if ($display_name != "") {

 25: $display_block .= "<P>Adding information for

 26: $display_name:</p>";

 27: } else {

 28: $display_block .= "

 29: <P>First/Last Names:

 30: <input type=\"text\" name=\"f_name\" size=30 maxlength=75>

 31: <input type=\"text\" name=\"l_name\" size=30

maxlength=75>";

 32: }

 33: $display_block .= "<P>Address:

 34: <input type=\"text\" name=\"address\" size=30>

 35:

 36: <P>City/State/Zip:

 37: <input type=\"text\" name=\"city\" size=30 maxlength=50>

 38: <input type=\"text\" name=\"state\" size=5 maxlength=2>

 39: <input type=\"text\" name=\"zipcode\" size=10

maxlength=10>

 40:

 41: <P>Address Type:

 42: <input type=\"radio\" name=\"add_type\" value=\"home\"

checked> home

 43: <input type=\"radio\" name=\"add_type\" value=\"work\">

work

 44: <input type=\"radio\" name=\"add_type\" value=\"other\">

other

 45:

 46: <P>Telephone Number:

 47: <input type=\"text\" name=\"tel_number\" size=30

maxlength=25>

 48: <input type=\"radio\" name=\"tel_type\" value=\"home\"

checked> home

 49: <input type=\"radio\" name=\"tel_type\" value=\"work\">

work

 50: <input type=\"radio\" name=\"tel_type\" value=\"other\">

other

 51:

 52: <P>Fax Number:

 53: <input type=\"text\" name=\"fax_number\" size=30

maxlength=25>

 54: <input type=\"radio\" name=\"fax_type\" value=\"home\"

checked> home

 55: <input type=\"radio\" name=\"fax_type\" value=\"work\">

work

 56: <input type=\"radio\" name=\"fax_type\" value=\"other\">

other

 57:

 58: <P>Email Address:

 59: <input type=\"text\" name=\"email\" size=30 maxlength=150>

 60: <input type=\"radio\" name=\"email_type\" value=\"home\"

checked> home

 61: <input type=\"radio\" name=\"email_type\" value=\"work\">

work

 62: <input type=\"radio\" name=\"email_type\" value=\"other\">

other

 63:

Page 21 of 24

 64: <P>Personal Note:

 65: <textarea name=\"note\" cols=35 rows=5

wrap=virtual></textarea>

 66: <input type=\"hidden\" name=\"op\" value=\"add\">

 67: <input type=\"hidden\" name=\"master_id\"

value=\"$_GET[master_id]\">

 68:

 69: <p><input type=\"submit\" name=\"submit\" value=\"Add

Entry\"></p>

 70: </FORM>";

 71:

 72: } else if ($_POST[op] == "add") {

 73: //time to add to tables, so check for required fields

 74: if ((($_POST[f_name] == "") || ($_POST[l_name] == "")) &&

 75: ($_POST[master_id] == "")) {

 76: header("Location: addentry.php");

 77: exit;

 78: }

 79:

 80: //connect to database

 81: $conn = mysql_connect("localhost", "joeuser", "somepass")

 82: or die(mysql_error());

 83: mysql_select_db("testDB",$conn) or die(mysql_error());

 84:

 85: if ($_POST[master_id] == "") {

 86: //add to master_name table

 87: $add_master = "insert into master_name values ('', now(),

 88: now(), '$_POST[f_name]', '$_POST[l_name]')";

 89: mysql_query($add_master) or die(mysql_error());

 90: //get master_id for use with other tables

 91: $master_id = mysql_insert_id();

 92: } else {

 93: $master_id = $_POST[master_id];

 94: }

 95:

 96: if (($_POST[address]) || ($_POST[city]) || ($_POST[state])

||

 97: ($_POST[zipcode])) {

 98: //something relevant, so add to address table

 99: $add_address = "insert into address values ('',

$master_id,

100: now(), now(), '$_POST[address]', '$_POST[city]',

101: '$_POST[state]', '$_POST[zipcode]',

'$_POST[add_type]')";

102: mysql_query($add_address) or die(mysql_error());

103: }

104:

105: if ($_POST[tel_number]) {

106: //something relevant, so add to telephone table

107: $add_tel = "insert into telephone values ('', $master_id,

108: now(), now(), '$_POST[tel_number]',

'$_POST[tel_type]')";

109: mysql_query($add_tel) or die(mysql_error());

110: }

111:

112: if ($_POST[fax_number]) {

113: //something relevant, so add to fax table

114: $add_fax = "insert into fax values ('', $master_id,

now(),

115: now(), '$_POST[fax_number]', '$_POST[fax_type]')";

116: mysql_query($add_fax) or die(mysql_error());

Page 22 of 24

117: }

118:

119: if ($_POST[email]) {

120: //something relevant, so add to email table

121: $add_email = "insert into email values ('', $master_id,

122: now(), now(), '$_POST[email]',

'$_POST[email_type]')";

123: mysql_query($add_email) or die(mysql_error());

124: }

125:

126: if ($_POST[note]) {

127: //something relevant, so add to notes table

128: $add_note = "replace into personal_notes values ('',

$master_id,

129: now(), now(), '$_POST[note]')";

130: mysql_query($add_note) or die(mysql_error());

131: }

132:

133: $display_block = "<h1>Entry Added</h1>

134: <P>Your entry has been added. Would you like to

135: add another?</p>";

136: }

137: ?>

138: <HTML>

139: <HEAD>

140: <TITLE>Add an Entry</TITLE>

141: </HEAD>

142: <BODY>

143: <?php echo $display_block; ?>

144: </BODY>

145: </HTML>

Page 23 of 24

You can try out this revised script by selecting a record to view and then following the

add info link. You should see a form like Figure 7.

Figure 7. Adding to a record.

After submitting this form, you can go back through the selection sequence and view

the record to verify that your changes have been made.

Page 24 of 24

Workshop

The workshop is designed to help you anticipate possible questions, review what

you've learned, and begin learning how to put your knowledge into practice.

Quiz

1. When passing a variable through the query string, which superglobal does it

belong in?

2. How many records in the address, email, telephone, and fax tables can

you have for each individual in your master_name table?

Answers

1. The $_GET superglobal.

2. As many as you want it's relational!

Activities

1. Go through each of the administration scripts and modify the code so that a

link to the menu is printed at the bottom of each screen.

2. Use the second version of the addentry.php script to add secondary contact

information to records in your database. Figure 8 shows how a record will

look after secondary contact information is added to it.

Figure 8. An individual's record with multiple entries in tables.

